Back to Search
Start Over
Machine-Learning-Based Android Malware Family Classification Using Built-In and Custom Permissions
- Source :
- Applied Sciences, Vol 11, Iss 21, p 10244 (2021)
- Publication Year :
- 2021
- Publisher :
- MDPI AG, 2021.
-
Abstract
- Malware family classification is grouping malware samples that have the same or similar characteristics into the same family. It plays a crucial role in understanding notable malicious patterns and recovering from malware infections. Although many machine learning approaches have been devised for this problem, there are still several open questions including, “Which features, classifiers, and evaluation metrics are better for malware familial classification”? In this paper, we propose a machine learning approach to Android malware family classification using built-in and custom permissions. Each Android app must declare proper permissions to access restricted resources or to perform restricted actions. Permission declaration is an efficient and obfuscation-resilient feature for malware analysis. We developed a malware family classification technique using permissions and conducted extensive experiments with several classifiers on a well-known dataset, DREBIN. We then evaluated the classifiers in terms of four metrics: macrolevel F1-score, accuracy, balanced accuracy (BAC), and the Matthews correlation coefficient (MCC). BAC and the MCC are known to be appropriate for evaluating imbalanced data classification. Our experimental results showed that: (i) custom permissions had a positive impact on classification performance; (ii) even when the same classifier and the same feature information were used, there was a difference up to 3.67% between accuracy and BAC; (iii) LightGBM and AdaBoost performed better than other classifiers we considered.
Details
- Language :
- English
- ISSN :
- 11211024 and 20763417
- Volume :
- 11
- Issue :
- 21
- Database :
- Directory of Open Access Journals
- Journal :
- Applied Sciences
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.42e84cfec1774c0aa49eb9db94b74570
- Document Type :
- article
- Full Text :
- https://doi.org/10.3390/app112110244