Back to Search Start Over

Multi-port coordination: Unlocking flexibility and hydrogen opportunities in green energy networks

Authors :
Saman Nikkhah
Arman Alahyari
Abbas Rabiee
Adib Allahham
Damian Giaouris
Source :
International Journal of Electrical Power & Energy Systems, Vol 158, Iss , Pp 109937- (2024)
Publication Year :
2024
Publisher :
Elsevier, 2024.

Abstract

Seaports are responsible for consuming a large amount of energy and producing a sizeable amount of environmental emissions. However, optimal coordination and cooperation present an opportunity to transform this challenge into an opportunity by enabling flexibility in their generation and load units. This paper introduces a coordination framework for exploiting flexibility across multiple ports. The proposed method fosters cooperation between ports in achieving lower environmental emissions while leveraging flexibility to increase their revenue. This platform allows ports to participate in providing flexibility for the energy grid through the introduction of a green port-to-grid concept while optimising their cooperation. Furthermore, the proximity to offshore wind farms is considered an opportunity for the ports to investigate their role in harnessing green hydrogen. The proposed method explores the hydrogen storage capability of ports as an opportunity for increasing the techno-economic benefits, particularly through coupling them with offshore wind farms. Compared to existing literature, the proposed method enjoys a comprehensive logistics-electric model for the ports, a novel coordination framework for multi-port flexibility, and the potentials of hydrogen storage for the ports. These unique features position this paper a valuable reference for research and industry by demonstrating realistic cooperation among ports in the energy network. The simulation results confirm the effectiveness of the proposed port flexibility coordination from both environmental and economic perspectives.

Details

Language :
English
ISSN :
01420615
Volume :
158
Issue :
109937-
Database :
Directory of Open Access Journals
Journal :
International Journal of Electrical Power & Energy Systems
Publication Type :
Academic Journal
Accession number :
edsdoj.430f9c8ffaba492fa874fd440b2289c9
Document Type :
article
Full Text :
https://doi.org/10.1016/j.ijepes.2024.109937