Back to Search Start Over

Gene expression predictions and networks in natural populations supports the omnigenic theory

Gene expression predictions and networks in natural populations supports the omnigenic theory

Authors :
Aurélien Chateigner
Marie-Claude Lesage-Descauses
Odile Rogier
Véronique Jorge
Jean-Charles Leplé
Véronique Brunaud
Christine Paysant-Le Roux
Ludivine Soubigou-Taconnat
Marie-Laure Martin-Magniette
Leopoldo Sanchez
Vincent Segura
Source :
BMC Genomics, Vol 21, Iss 1, Pp 1-16 (2020)
Publication Year :
2020
Publisher :
BMC, 2020.

Abstract

Abstract Background Recent literature on the differential role of genes within networks distinguishes core from peripheral genes. If previous works have shown contrasting features between them, whether such categorization matters for phenotype prediction remains to be studied. Results We measured 17 phenotypic traits for 241 cloned genotypes from a Populus nigra collection, covering growth, phenology, chemical and physical properties. We also sequenced RNA for each genotype and built co-expression networks to define core and peripheral genes. We found that cores were more differentiated between populations than peripherals while being less variable, suggesting that they have been constrained through potentially divergent selection. We also showed that while cores were overrepresented in a subset of genes statistically selected for their capacity to predict the phenotypes (by Boruta algorithm), they did not systematically predict better than peripherals or even random genes. Conclusion Our work is the first attempt to assess the importance of co-expression network connectivity in phenotype prediction. While highly connected core genes appear to be important, they do not bear enough information to systematically predict better quantitative traits than other gene sets.

Details

Language :
English
ISSN :
14712164
Volume :
21
Issue :
1
Database :
Directory of Open Access Journals
Journal :
BMC Genomics
Publication Type :
Academic Journal
Accession number :
edsdoj.43a819d80143bf8622f38093c0b4b3
Document Type :
article
Full Text :
https://doi.org/10.1186/s12864-020-06809-2