Back to Search Start Over

Global distribution and drivers of relative contributions among soil nitrogen sources to terrestrial plants

Authors :
Chao-Chen Hu
Xue-Yan Liu
Avery W. Driscoll
Yuan-Wen Kuang
E. N. Jack Brookshire
Xiao-Tao Lü
Chong-Juan Chen
Wei Song
Rong Mao
Cong-Qiang Liu
Benjamin Z. Houlton
Source :
Nature Communications, Vol 15, Iss 1, Pp 1-9 (2024)
Publication Year :
2024
Publisher :
Nature Portfolio, 2024.

Abstract

Abstract Soil extractable nitrate, ammonium, and organic nitrogen (N) are essential N sources supporting primary productivity and regulating species composition of terrestrial plants. However, it remains unclear how plants utilize these N sources and how surface-earth environments regulate plant N utilization. Here, we establish a framework to analyze observational data of natural N isotopes in plants and soils globally, we quantify fractional contributions of soil nitrate (f NO3-), ammonium (f NH4+), and organic N (f EON) to plant-used N in soils. We find that mean annual temperature (MAT), not mean annual precipitation or atmospheric N deposition, regulates global variations of f NO3-, f NH4+, and f EON. The f NO3- increases with MAT, reaching 46% at 28.5 °C. The f NH4+ also increases with MAT, achieving a maximum of 46% at 14.4 °C, showing a decline as temperatures further increase. Meanwhile, the f EON gradually decreases with MAT, stabilizing at about 20% when the MAT exceeds 15 °C. These results clarify global plant N-use patterns and reveal temperature rather than human N loading as a key regulator, which should be considered in evaluating influences of global changes on terrestrial ecosystems.

Subjects

Subjects :
Science

Details

Language :
English
ISSN :
20411723
Volume :
15
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Nature Communications
Publication Type :
Academic Journal
Accession number :
edsdoj.43f3b12d55db4209a5b02d22d3cf30b2
Document Type :
article
Full Text :
https://doi.org/10.1038/s41467-024-50674-6