Back to Search
Start Over
Computational insights into popsilicene as a new planar silicon allotrope composed of 5–8–5 rings
- Source :
- Scientific Reports, Vol 14, Iss 1, Pp 1-8 (2024)
- Publication Year :
- 2024
- Publisher :
- Nature Portfolio, 2024.
-
Abstract
- Abstract Silicon-based two-dimensional (2D) materials have garnered significant attention due to their unique properties and potential applications in electronics, optoelectronics, and other advanced technologies. Here, we present a comprehensive investigation of a novel silicon allotrope, Popsilicene (Pop-Si), derived from the structure of Popgraphene. Using density functional theory and ab initio molecular dynamics simulations, we explore the thermal stability, mechanical and electronic properties, and optical characteristics of Pop-Si. Our results demonstrate that Pop-Si exhibits good thermal stability at 1000 K. Electronic structure calculations reveal that Pop-Si is metallic, with a high density of states at the Fermi level. Furthermore, our analysis of the optical properties indicates that Pop-Si has pronounced UV–Vis optical activity, making it a promising candidate for optoelectronic devices. Mechanical property assessments show that Pop-Si has Young’s modulus ranging from 10 to 92 GPa and a Poisson’s ratio of 0.95. These results combined suggest its potential for practical applications.
- Subjects :
- Popgraphene
Popsilicene
DFT
2D Materials
Medicine
Science
Subjects
Details
- Language :
- English
- ISSN :
- 20452322
- Volume :
- 14
- Issue :
- 1
- Database :
- Directory of Open Access Journals
- Journal :
- Scientific Reports
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.441327489634afca87fd0b647b79666
- Document Type :
- article
- Full Text :
- https://doi.org/10.1038/s41598-024-69788-4