Back to Search Start Over

Fracture Behavior of a 2D Imine‐Based Polymer

Authors :
Bowen Zhang
Xiaohui Liu
David Bodesheim
Wei Li
André Clausner
Jinxin Liu
Birgit Jost
Arezoo Dianat
Renhao Dong
Xinliang Feng
Gianaurelio Cuniberti
Zhongquan Liao
Ehrenfried Zschech
Source :
Advanced Science, Vol 11, Iss 42, Pp n/a-n/a (2024)
Publication Year :
2024
Publisher :
Wiley, 2024.

Abstract

Abstract 2D polymers have emerged as a highly promising category of nanomaterials, owing to their exceptional properties. However, the understanding of their fracture behavior and failure mechanisms remains still limited, posing challenges to their durability in practical applications. This work presents an in‐depth study of the fracture kinetics of a 2D polyimine film, utilizing in situ tensile testing within a transmission electron microscope (TEM). Employing meticulously optimized transferring and patterning techniques, an elastic strain of ≈6.5% is achieved, corresponding to an elastic modulus of (8.6 ± 2.5) GPa of polycrystalline 2D polyimine thin films. In step‐by‐step fractures, multiple cracking events uncover the initiation and development of side crack near the main crack tip which toughens the 2D film. Simultaneously captured strain evolution through digital image correlation (DIC) analysis and observation on the crack edge confirm the occurrence of transgranular fracture patterns apart from intergranular fracture. A preferred cleavage orientation in transgranular fracture is attributed to the difference in directional flexibility along distinct orientations, which is substantiated by density functional‐based tight binding (DFTB) calculations. These findings construct a comprehensive understanding of intrinsic mechanical properties and fracture behavior of an imine‐linked polymer and provide insights and implications for the rational design of 2D polymers.

Details

Language :
English
ISSN :
21983844
Volume :
11
Issue :
42
Database :
Directory of Open Access Journals
Journal :
Advanced Science
Publication Type :
Academic Journal
Accession number :
edsdoj.44280384fe0c4c7cbd490d5540f6a13e
Document Type :
article
Full Text :
https://doi.org/10.1002/advs.202407017