Back to Search
Start Over
Influence of Atmospheric Turbulence Channel on a Super-Resolution Ghost Imaging Transmission System Based on Plasmonic Structure Illumination Microscopy
- Source :
- Frontiers in Physics, Vol 8 (2020)
- Publication Year :
- 2020
- Publisher :
- Frontiers Media S.A., 2020.
-
Abstract
- Ghost imaging is a novel imaging technique that has various advantages over traditional imaging. However, most of the existing works on this technique do not achieve a better resolution than the diffraction limit. In this work, we presented a ghost imaging system with plasmonic structure illumination microscopy that achieved super-resolution imaging. The resolution reaches three to four times of the diffraction limit with surface plasmon polaritons and structure illumination microscopy theory. Since it can produce super-resolution images, this method has important implications in medical fields, such as in microimaging and endoscopy. We used the gamma–gamma intensity-fluctuation model to simulate the ghost imaging system in an atmospheric turbulence channel. By setting proper values of the transmission distance and refractive-index structure parameter, we obtain the peak signal-to-noise ratio (PSNR) performance and symbol-error rate (SER) performance. Finally, the PSNR and SER are used to evaluate the imaging quality, which provides a theoretical model to research the ghost-imaging algorithm further.
Details
- Language :
- English
- ISSN :
- 2296424X
- Volume :
- 8
- Database :
- Directory of Open Access Journals
- Journal :
- Frontiers in Physics
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.44fc143e2da74c82b7f3c99694af1825
- Document Type :
- article
- Full Text :
- https://doi.org/10.3389/fphy.2020.546528