Back to Search Start Over

An Analysis of the Emotional Evolution of Large-Scale Internet Public Opinion Events Based on the BERT-LDA Hybrid Model

Authors :
Xu Tan
Muni Zhuang
Xin Lu
Taitian Mao
Source :
IEEE Access, Vol 9, Pp 15860-15871 (2021)
Publication Year :
2021
Publisher :
IEEE, 2021.

Abstract

The purpose of this article is to analyse the emotional evolution of the netizens in reaction to the events of the Anti-ELAB (Anti-Extradition Law Amendment Bill) movement in Hong Kong. We attempt to investigate evolving laws of large-scale Internet public opinion events and provide relevant agencies with a theoretical basis for a public opinion response mechanism. On the basis of improving the Bidirectional Encoder Representations from Transformers (BERT) pre-training task, we add in-depth pre-training tasks, and based on the optimisation results of the LDA topic embedding, we integrate deeply with the LDA model to dynamically present the fine-grained public sentiment of the event. Through the collection of large-scale text data related to the Anti-ELAB Movement from a well-known forum in Hong Kong, a BERT-LDA hybrid model for large-scale network public opinion analysis is constructed in a complex context. Through empirical analysis, we calculate and reveal the emotional change process of netizens and opinion leaders in the three transition stages of the Anti-ELAB Movement with the evolution of the topic word as the core by visualisation. We also analyse the emotional distribution and evolution trend of public opinion under the `text topic', and deeply analyse the character and role of opinion leaders in Anti-ELAB public opinion events. The improved BERT-LDA model or sentiment classification AUC value exceeds 99.6% in the sentiment classification task for the Anti-ELAB Movement.

Details

Language :
English
ISSN :
21693536
Volume :
9
Database :
Directory of Open Access Journals
Journal :
IEEE Access
Publication Type :
Academic Journal
Accession number :
edsdoj.4508734b4791447999ffabf3bd3fa2fc
Document Type :
article
Full Text :
https://doi.org/10.1109/ACCESS.2021.3052566