Back to Search Start Over

Assessing the impact of clouds on ground-based UV–visible total column ozone measurements in the high Arctic

Authors :
X. Zhao
K. Bognar
V. Fioletov
A. Pazmino
F. Goutail
L. Millán
G. Manney
C. Adams
K. Strong
Source :
Atmospheric Measurement Techniques, Vol 12, Pp 2463-2483 (2019)
Publication Year :
2019
Publisher :
Copernicus Publications, 2019.

Abstract

Zenith-Sky scattered light Differential Optical Absorption Spectroscopy (ZS-DOAS) has been used widely to retrieve total column ozone (TCO). ZS-DOAS measurements have the advantage of being less sensitive to clouds than direct-sun measurements. However, the presence of clouds still affects the quality of ZS-DOAS TCO. Clouds are thought to be the largest contributor to random uncertainty in ZS-DOAS TCO, but their impact on data quality still needs to be quantified. This study has two goals: (1) to investigate whether clouds have a significant impact on ZS-DOAS TCO, and (2) to develop a cloud-screening algorithm to improve ZS-DOAS measurements in the Arctic under cloudy conditions. To quantify the impact of weather, 8 years of measured and modelled TCO have been used, along with information about weather conditions at Eureka, Canada (80.05∘ N, 86.41∘ W). Relative to direct-sun TCO measurements by Brewer spectrophotometers and modelled TCO, a positive bias is found in ZS-DOAS TCO measured in cloudy weather, and a negative bias is found for clear conditions, with differences of up to 5 % between clear and cloudy conditions. A cloud-screening algorithm is developed for high latitudes using the colour index calculated from ZS-DOAS spectra. The quality of ZS-DOAS TCO datasets is assessed using a statistical uncertainty estimation model, which suggests a 3 %–4 % random uncertainty. The new cloud-screening algorithm reduces the random uncertainty by 0.6 %. If all measurements collected during cloudy conditions, as identified using the weather station observations, are removed, the random uncertainty is reduced by 1.3 %. This work demonstrates that clouds are a significant contributor to uncertainty in ZS-DOAS TCO and proposes a method that can be used to screen clouds in high-latitude spectra.

Details

Language :
English
ISSN :
18671381 and 18678548
Volume :
12
Database :
Directory of Open Access Journals
Journal :
Atmospheric Measurement Techniques
Publication Type :
Academic Journal
Accession number :
edsdoj.455f3df2fe44c0abd8e56d63732799f
Document Type :
article
Full Text :
https://doi.org/10.5194/amt-12-2463-2019