Back to Search Start Over

Effect of Metaldehyde on Survival, Enzyme Activities, and Histopathology of the Apple Snail Pomacea canaliculata (Lamarck 1822)

Authors :
Jimin Liu
Xuan Chen
Jiaen Zhang
Fucheng Yao
Zhaoji Shi
Yingtong Chen
Qi Chen
Zhong Qin
Source :
Biology, Vol 13, Iss 6, p 428 (2024)
Publication Year :
2024
Publisher :
MDPI AG, 2024.

Abstract

Pomacea canaliculata, as an invasive exotic species in Asia, can adversely affect crop yields, eco-environment, and human health. Application of molluscicides containing metaldehyde is one effective method for controlling P. canaliculata. In order to investigate the effects of metaldehyde on adult snails, we conducted acute toxicological experiments to investigate the changes in enzyme activities and histopathology after 24 h and 48 h of metaldehyde action. The results showed that the median lethal concentrations (LC) of metaldehyde on P. canaliculata were 3.792, 2.195, 1.833, and 1.706 mg/L at exposure times of 24, 48, 72, and 96 h, respectively. Treatment and time significantly affected acetylcholinesterase (AChE), glutathione S-transferase (GST), and total antioxidant capacity (TAC) activity, with sex significantly affecting AChE, GST, and TAC activity and time significantly affecting carboxylesterase (CarE). In addition, the interaction of treatment and time significantly affected the activity of GST, CarE and TAC. In addition, histopathological changes occurred in the digestive glands, gills and gastropods of apple snail exposed to metaldehyde. Histological examination of the digestive glands included atrophy of the digestive cells, widening of the hemolymph gap, and an increase in basophils. In treated snails, the hemolymph gap in the gills was widely dilated, the columnar cells were disorganized or even necrotic, and the columnar muscle cells in the ventral foot were loosely arranged and the muscle fibers reduced. The findings of this study can provide some references for controlling the toxicity mechanism of invasive species.

Details

Language :
English
ISSN :
20797737
Volume :
13
Issue :
6
Database :
Directory of Open Access Journals
Journal :
Biology
Publication Type :
Academic Journal
Accession number :
edsdoj.463c193e39f54957aaca421449340dc5
Document Type :
article
Full Text :
https://doi.org/10.3390/biology13060428