Back to Search Start Over

Comprehensive risk factor-based nomogram for predicting one-year mortality in patients with sepsis-associated encephalopathy

Authors :
Guangyong Jin
Menglu Zhou
Jiayi Chen
Buqing Ma
Jianrong Wang
Rui Ye
Chunxiao Fang
Wei Hu
Yanan Dai
Source :
Scientific Reports, Vol 14, Iss 1, Pp 1-13 (2024)
Publication Year :
2024
Publisher :
Nature Portfolio, 2024.

Abstract

Abstract Sepsis-associated encephalopathy (SAE) is a frequent and severe complication in septic patients, characterized by diffuse brain dysfunction resulting from systemic inflammation. Accurate prediction of long-term mortality in these patients is critical for improving clinical outcomes and guiding treatment strategies. We conducted a retrospective cohort study using the MIMIC IV database to identify adult patients diagnosed with SAE. Patients were randomly divided into a training set (70%) and a validation set (30%). Least absolute shrinkage and selection operator regression and multivariate logistic regression were employed to identify significant predictors of 1-year mortality, which were then used to develop a prognostic nomogram. The model’s discrimination, calibration, and clinical utility were assessed using the area under the receiver operating characteristic curve (AUC), calibration plots, and decision curve analysis, respectively. A total of 3,882 SAE patients were included in the analysis. The nomogram demonstrated strong predictive performance with AUCs of 0.881 (95% CI: 0.865, 0.896) in the training set and 0.859 (95% CI: 0.830, 0.888) in the validation set. Calibration plots indicated good agreement between predicted and observed 1-year mortality rates. The decision curve analysis showed that the nomogram provided greater net benefit across a range of threshold probabilities compared to traditional scoring systems such as Glasgow Coma Scale and Sequential Organ Failure Assessment. Our study presents a robust and clinically applicable nomogram for predicting 1-year mortality in SAE patients. This tool offers superior predictive performance compared to existing severity scoring systems and has significant potential to enhance clinical decision-making and patient management in critical care settings.

Details

Language :
English
ISSN :
20452322
Volume :
14
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Scientific Reports
Publication Type :
Academic Journal
Accession number :
edsdoj.46a65258ed7840d1a7fe3fbd343ba63c
Document Type :
article
Full Text :
https://doi.org/10.1038/s41598-024-74837-z