Back to Search
Start Over
Selective degradation of AR-V7 to overcome castration resistance of prostate cancer
- Source :
- Cell Death and Disease, Vol 12, Iss 10, Pp 1-13 (2021)
- Publication Year :
- 2021
- Publisher :
- Nature Publishing Group, 2021.
-
Abstract
- Abstract Androgen receptor splice variant 7 (AR-V7), a form of ligand-independent and constitutively activating variant of androgen receptor (AR), is considered as the key driver to initiate castration-resistant prostate cancer (CRPC). Because AR-V7 lacks ligand-binding domain, the AR-targeted therapies that aim to inactivate AR signaling through disrupting the interaction between AR and androgen are limited in CRPC. Thus, the emergence of AR-V7 has become the greatest challenge for treating CRPC. Targeting protein degradation is a recently proposed novel avenue for cancer treatment. Our previous studies have been shown that the oncoprotein AR-V7 is a substrate of the proteasome. Identifying novel drugs that can trigger the degradation of AR-V7 is therefore critical to cure CRPC. Here we show that nobiletin, a polymethoxylated flavonoid derived from the peel of Citrus fruits, exerts a potent anticancer activity via inducing G0/G1 phase arrest and enhancing the sensitivity of cells to enzalutamide in AR-V7 positive PC cells. Mechanically, we unravel that nobiletin selectively induces proteasomal degradation of AR-V7 (but not AR). This effect relies on its selective inhibition of the interactions between AR-V7 and two deubiquitinases USP14 and USP22. These findings not only enrich our understanding on the mechanism of AR-V7 degradation, but also provide an efficient and druggable target for overcoming CRPC through interfering the stability of AR-V7 mediated by the interaction between AR-V7 and deubiquitinase.
Details
- Language :
- English
- ISSN :
- 20414889
- Volume :
- 12
- Issue :
- 10
- Database :
- Directory of Open Access Journals
- Journal :
- Cell Death and Disease
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.475b921610f947b4a4e3c36febb984eb
- Document Type :
- article
- Full Text :
- https://doi.org/10.1038/s41419-021-04162-0