Back to Search Start Over

Assessment of Seven Atmospheric Correction Processors for the Sentinel-2 Multi-Spectral Imager over Lakes in Qinghai Province

Authors :
Wenxin Li
Yuancheng Huang
Qian Shen
Yue Yao
Wenting Xu
Jiarui Shi
Yuting Zhou
Jinzhi Li
Yuting Zhang
Hangyu Gao
Source :
Remote Sensing, Vol 15, Iss 22, p 5370 (2023)
Publication Year :
2023
Publisher :
MDPI AG, 2023.

Abstract

The European Space Agency (ESA) developed the Sentinel-2 Multispectral Imager (MSI), which offers a higher spatial resolution and shorter repeat coverage, making it an important source for the remote-sensing monitoring of water bodies. Atmospheric correction is crucial for the monitoring of water quality. To compare the applicability of seven publicly available atmospheric correction processors (ACOLITE, C2RCC, C2XC, iCOR, POLYMER, SeaDAS, and Sen2Cor), we chose complex and diverse lakes in Qinghai Province, China, as the research area. The lakes were divided into three types based on the waveform characteristics of Rrs: turbid water bodies (class I lakes) represented by the Dabusun Lake (DBX), clean water bodies (class II lakes) represented by the Qinghai Lake (QHH), and relatively clean water bodies (class III lakes) represented by the Longyangxia Reservoir (LYX). Compared with the in situ Rrs, it was found that for the DBX, the Sen2Cor processor performed best. The POLYMER processor exhibited a good performance in the QHH. The C2XC processor performed well with the LYX. Using the Sen2Cor, POLYMER, and C2XC processors for classes I, II, and III, respectively, compared with the Sentinel-3 OLCI Level-2 Water Full Resolution (L2-WFR) products, it was found that the estimated Rrs from the POLYMER had the highest consistency. Slight deviations were observed in the estimation results for both the Sen2Cor and C2XC.

Details

Language :
English
ISSN :
20724292
Volume :
15
Issue :
22
Database :
Directory of Open Access Journals
Journal :
Remote Sensing
Publication Type :
Academic Journal
Accession number :
edsdoj.47b8b768d5c642be915b970bd93a40a3
Document Type :
article
Full Text :
https://doi.org/10.3390/rs15225370