Back to Search Start Over

On $ (n_1, \cdots, n_m) $-hyponormal tuples of Hilbert space operators

Authors :
Sid Ahmed Ould Beinane
Sid Ahmed Ould Ahmed Mahmoud
Source :
AIMS Mathematics, Vol 9, Iss 10, Pp 27784-27796 (2024)
Publication Year :
2024
Publisher :
AIMS Press, 2024.

Abstract

This paper introduces a new class of multivariable operators called $ (n_1, \cdots, n_m) $-hyponormal tuples, which combine joint normal and joint hyponormal operators. A tuple of operators $ \mathcal{Q} = (\mathcal{Q}_1, \; \cdots, \mathcal{Q}_m) $ is said to be an $ (n_1, \cdots, n_m) $-hyponormal tuple for some $ (n_1, \cdots, n_m)\in \mathbb{N}^m $ if$ \sum\limits_{1\leq k,\;l\leq m}\big\langle[\mathcal{Q}_k^{*n_k}, \;\mathcal{Q}_l^{n_l}]\omega_k\mid \omega_l\big\rangle\geq 0, \quad \forall\; (\omega_k)_{1\leq k\leq m}\in {\mathcal K}^m. $We show several properties of this class that correspond to the properties of joint hyponormal operators.

Details

Language :
English
ISSN :
24736988
Volume :
9
Issue :
10
Database :
Directory of Open Access Journals
Journal :
AIMS Mathematics
Publication Type :
Academic Journal
Accession number :
edsdoj.47e015ee4774bb09313927eb1b4dbbf
Document Type :
article
Full Text :
https://doi.org/10.3934/math.20241349?viewType=HTML