Back to Search
Start Over
On $ (n_1, \cdots, n_m) $-hyponormal tuples of Hilbert space operators
- Source :
- AIMS Mathematics, Vol 9, Iss 10, Pp 27784-27796 (2024)
- Publication Year :
- 2024
- Publisher :
- AIMS Press, 2024.
-
Abstract
- This paper introduces a new class of multivariable operators called $ (n_1, \cdots, n_m) $-hyponormal tuples, which combine joint normal and joint hyponormal operators. A tuple of operators $ \mathcal{Q} = (\mathcal{Q}_1, \; \cdots, \mathcal{Q}_m) $ is said to be an $ (n_1, \cdots, n_m) $-hyponormal tuple for some $ (n_1, \cdots, n_m)\in \mathbb{N}^m $ if$ \sum\limits_{1\leq k,\;l\leq m}\big\langle[\mathcal{Q}_k^{*n_k}, \;\mathcal{Q}_l^{n_l}]\omega_k\mid \omega_l\big\rangle\geq 0, \quad \forall\; (\omega_k)_{1\leq k\leq m}\in {\mathcal K}^m. $We show several properties of this class that correspond to the properties of joint hyponormal operators.
Details
- Language :
- English
- ISSN :
- 24736988
- Volume :
- 9
- Issue :
- 10
- Database :
- Directory of Open Access Journals
- Journal :
- AIMS Mathematics
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.47e015ee4774bb09313927eb1b4dbbf
- Document Type :
- article
- Full Text :
- https://doi.org/10.3934/math.20241349?viewType=HTML