Back to Search Start Over

Reciprocal allosteric modulation of carbon monoxide and warfarin binding to ferrous human serum heme-albumin.

Authors :
Alessio Bocedi
Giampiero De Sanctis
Chiara Ciaccio
Grazia R Tundo
Alessandra Di Masi
Gabriella Fanali
Francesco P Nicoletti
Mauro Fasano
Giulietta Smulevich
Paolo Ascenzi
Massimo Coletta
Source :
PLoS ONE, Vol 8, Iss 3, p e58842 (2013)
Publication Year :
2013
Publisher :
Public Library of Science (PLoS), 2013.

Abstract

Human serum albumin (HSA), the most abundant protein in human plasma, could be considered as a prototypic monomeric allosteric protein, since the ligand-dependent conformational adaptability of HSA spreads beyond the immediate proximity of the binding site(s). As a matter of fact, HSA is a major transport protein in the bloodstream and the regulation of the functional allosteric interrelationships between the different binding sites represents a fundamental information for the knowledge of its transport function. Here, kinetics and thermodynamics of the allosteric modulation: (i) of carbon monoxide (CO) binding to ferrous human serum heme-albumin (HSA-heme-Fe(II)) by warfarin (WF), and (ii) of WF binding to HSA-heme-Fe(II) by CO are reported. All data were obtained at pH 7.0 and 25°C. Kinetics of CO and WF binding to the FA1 and FA7 sites of HSA-heme-Fe(II), respectively, follows a multi-exponential behavior (with the same relative percentage for the two ligands). This can be accounted for by the existence of multiple conformations and/or heme-protein axial coordination forms of HSA-heme-Fe(II). The HSA-heme-Fe(II) populations have been characterized by resonance Raman spectroscopy, indicating the coexistence of different species characterized by four-, five- and six-coordination of the heme-Fe atom. As a whole, these results suggest that: (i) upon CO binding a conformational change of HSA-heme-Fe(II) takes place (likely reflecting the displacement of an endogenous ligand by CO), and (ii) CO and/or WF binding brings about a ligand-dependent variation of the HSA-heme-Fe(II) population distribution of the various coordinating species. The detailed thermodynamic and kinetic analysis here reported allows a quantitative description of the mutual allosteric effect of CO and WF binding to HSA-heme-Fe(II).

Subjects

Subjects :
Medicine
Science

Details

Language :
English
ISSN :
19326203
Volume :
8
Issue :
3
Database :
Directory of Open Access Journals
Journal :
PLoS ONE
Publication Type :
Academic Journal
Accession number :
edsdoj.480cc9f4a5845c685ed0f6f59ccff39
Document Type :
article
Full Text :
https://doi.org/10.1371/journal.pone.0058842