Back to Search Start Over

Construction, visualisation, and clustering of transcription networks from microarray expression data.

Authors :
Tom C Freeman
Leon Goldovsky
Markus Brosch
Stijn van Dongen
Pierre Mazière
Russell J Grocock
Shiri Freilich
Janet Thornton
Anton J Enright
Source :
PLoS Computational Biology, Vol 3, Iss 10, Pp 2032-2042 (2007)
Publication Year :
2007
Publisher :
Public Library of Science (PLoS), 2007.

Abstract

Network analysis transcends conventional pairwise approaches to data analysis as the context of components in a network graph can be taken into account. Such approaches are increasingly being applied to genomics data, where functional linkages are used to connect genes or proteins. However, while microarray gene expression datasets are now abundant and of high quality, few approaches have been developed for analysis of such data in a network context. We present a novel approach for 3-D visualisation and analysis of transcriptional networks generated from microarray data. These networks consist of nodes representing transcripts connected by virtue of their expression profile similarity across multiple conditions. Analysing genome-wide gene transcription across 61 mouse tissues, we describe the unusual topography of the large and highly structured networks produced, and demonstrate how they can be used to visualise, cluster, and mine large datasets. This approach is fast, intuitive, and versatile, and allows the identification of biological relationships that may be missed by conventional analysis techniques. This work has been implemented in a freely available open-source application named BioLayout Express(3D).

Subjects

Subjects :
Biology (General)
QH301-705.5

Details

Language :
English
ISSN :
1553734X and 15537358
Volume :
3
Issue :
10
Database :
Directory of Open Access Journals
Journal :
PLoS Computational Biology
Publication Type :
Academic Journal
Accession number :
edsdoj.48133e434464c6c8d0abe7582a9a309
Document Type :
article
Full Text :
https://doi.org/10.1371/journal.pcbi.0030206