Back to Search Start Over

Multi-label dental disorder diagnosis based on MobileNetV2 and swin transformer using bagging ensemble classifier

Authors :
Yasmin M. Alsakar
Naira Elazab
Nermeen Nader
Waleed Mohamed
Mohamed Ezzat
Mohammed Elmogy
Source :
Scientific Reports, Vol 14, Iss 1, Pp 1-23 (2024)
Publication Year :
2024
Publisher :
Nature Portfolio, 2024.

Abstract

Abstract Dental disorders are common worldwide, causing pain or infections and limiting mouth opening, so dental conditions impact productivity, work capability, and quality of life. Manual detection and classification of oral diseases is time-consuming and requires dentists’ evaluation and examination. The dental disease detection and classification system based on machine learning and deep learning will aid in early dental disease diagnosis. Hence, this paper proposes a new diagnosis system for dental diseases using X-ray imaging. The framework includes a robust pre-processing phase that uses image normalization and adaptive histogram equalization to improve image quality and reduce variation. A dual-stream approach is used for feature extraction, utilizing the advantages of Swin Transformer for capturing long-range dependencies and global context and MobileNetV2 for effective local feature extraction. A thorough representation of dental anomalies is produced by fusing the extracted features. To obtain reliable and broadly applicable classification results, a bagging ensemble classifier is utilized in the end. We evaluate our model on a benchmark dental radiography dataset. The experimental results and comparisons show the superiority of the proposed system with 95.7% for precision, 95.4% for sensitivity, 95.7% for specificity, 95.5% for Dice similarity coefficient, and 95.6% for accuracy. The results demonstrate the effectiveness of our hybrid model integrating MoileNetv2 and Swin Transformer architectures, outperforming state-of-the-art techniques in classifying dental diseases using dental panoramic X-ray imaging. This framework presents a promising method for robustly and accurately diagnosing dental diseases automatically, which may help dentists plan treatments and identify dental diseases early on.

Details

Language :
English
ISSN :
20452322
Volume :
14
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Scientific Reports
Publication Type :
Academic Journal
Accession number :
edsdoj.49dc677695f34e4f9f6757f78d29f116
Document Type :
article
Full Text :
https://doi.org/10.1038/s41598-024-73297-9