Back to Search Start Over

Study of Structural and Optical Properties of Electrodeposited Silicon Films on Graphite Substrates

Authors :
Muhammad Monirul Islam
Hajer Said
Ahmed Hichem Hamzaoui
Adel Mnif
Takeaki Sakurai
Naoki Fukata
Katsuhiro Akimoto
Source :
Nanomaterials, Vol 12, Iss 3, p 363 (2022)
Publication Year :
2022
Publisher :
MDPI AG, 2022.

Abstract

Silicon (Si) films were deposited on low-cost graphite substrates by the electrochemical reduction of silicon dioxide nanoparticles (nano-SiO2) in calcium chloride (CaCl2), melted at 855 °C. Cyclic voltammetry (CV) was used to analyze the electrochemical reduction mechanism of SiO2 to form Si deposits on the graphite substrate. X-ray diffraction (XRD) along with Raman and photoluminescence (PL) results show that the crystallinity of the electrodeposited Si-films was improved with an increase of the applied reduction potential during the electrochemical process. Scanning electron microscopy (SEM) reveals that the size, shape, and morphology of the Si-layers can be controlled from Si nanowires to the microcrystalline Si particles by controlling the reduction potentials. In addition, the morphology of the obtained Si-layers seems to be correlated with both the substrate materials and particle size of the feed materials. Thus, the difference in the electron transfer rate at substrate/nano-SiO2 interface due to different applied reduction potentials along with the dissolution rate of SiO2 particles during the electrochemical reduction process were found to be crucial in determining the microstructural properties of the Si-films.

Details

Language :
English
ISSN :
20794991
Volume :
12
Issue :
3
Database :
Directory of Open Access Journals
Journal :
Nanomaterials
Publication Type :
Academic Journal
Accession number :
edsdoj.4a102f97a5774c40b35d95bf1e8ef8b6
Document Type :
article
Full Text :
https://doi.org/10.3390/nano12030363