Back to Search Start Over

Energy stability prediction strategy for polymer electrolyte lithium batteries based upon an improved kinetic programming algorithm

Authors :
Wei-Chun Chen
Yih-Wen Wang
Wun-Cheng Jhang
Chi-Min Shu
Source :
Energy Reports, Vol 7, Iss , Pp 6600-6614 (2021)
Publication Year :
2021
Publisher :
Elsevier, 2021.

Abstract

Numerous incidents have illustrated that lithium-ion batteries are flammable and thermally unstable when used improperly or at high temperature. Decomposition reactions further increase the possibility of fire and explosion. Polymer electrolytes have been partially applied to commercial lithium-ion polymer batteries (LIPBs) and determined to improve their thermal stability at high temperature. To determine the degree of thermal stability conferred by a polymer electrolyte and enable its future application to various battery types under different combination modes, this study conducted adiabatic thermal tests to simulate and analyse the thermal runaway curves of LIPBs under various states of charge (SOC) by conducting thermodynamic evaluations. Combining the simulation kinetic model, the pseudo-first-order model was fitted to the self-heating reaction of the polymer electrolyte. In a typical explosion, the LIPB had a TNT equivalent mass of 0.028 g in a nitrogen atmosphere and 0.023 g under ambient conditions. Moreover, under a limited overpressure (2068.4 Pa; 0.3 psig), the safety distance of the LIPBs was 1.66 m in a nitrogen atmosphere and 5.79 m in an air atmosphere. In addition, the value of pressure increased from 2.90 to 22,476.9 Pa within 0.2 m in the case of an SOC change from 30% to 100 % in a nitrogen atmosphere. In the same distance, the blast pressure of an LIPB in the nitrogen atmosphere was 43% higher than that in ambient air. Combined with the thermal analysis data and kinetic model, the thermal stability results for the various SOCs of the polymer electrolyte were confirmed in calculating the reaction kinetics and key safety parameters in nitrogen and air environments.

Details

Language :
English
ISSN :
23524847
Volume :
7
Issue :
6600-6614
Database :
Directory of Open Access Journals
Journal :
Energy Reports
Publication Type :
Academic Journal
Accession number :
edsdoj.4a9371f7d6844a42b1e493c59f85701e
Document Type :
article
Full Text :
https://doi.org/10.1016/j.egyr.2021.09.131