Back to Search
Start Over
Fall Detection System Based on Point Cloud Enhancement Model for 24 GHz FMCW Radar
- Source :
- Sensors, Vol 24, Iss 2, p 648 (2024)
- Publication Year :
- 2024
- Publisher :
- MDPI AG, 2024.
-
Abstract
- Automatic fall detection plays a significant role in monitoring the health of senior citizens. In particular, millimeter-wave radar sensors are relevant for human pose recognition in an indoor environment due to their advantages of privacy protection, low hardware cost, and wide range of working conditions. However, low-quality point clouds from 4D radar diminish the reliability of fall detection. To improve the detection accuracy, conventional methods utilize more costly hardware. In this study, we propose a model that can provide high-quality three-dimensional point cloud images of the human body at a low cost. To improve the accuracy and effectiveness of fall detection, a system that extracts distribution features through small radar antenna arrays is developed. The proposed system achieved 99.1% and 98.9% accuracy on test datasets pertaining to new subjects and new environments, respectively.
- Subjects :
- radar
fall detection
machine learning
Chemical technology
TP1-1185
Subjects
Details
- Language :
- English
- ISSN :
- 24020648 and 14248220
- Volume :
- 24
- Issue :
- 2
- Database :
- Directory of Open Access Journals
- Journal :
- Sensors
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.4c5e0d6afdfb44d188e94378da7df32e
- Document Type :
- article
- Full Text :
- https://doi.org/10.3390/s24020648