Sorry, I don't understand your search. ×
Back to Search Start Over

Existence of standing waves for Schrodinger equations involving the fractional Laplacian

Authors :
Everaldo S. de Medeiros
Jose Anderson Cardoso
Manasses de Souza
Source :
Electronic Journal of Differential Equations, Vol 2017, Iss 76,, Pp 1-10 (2017)
Publication Year :
2017
Publisher :
Texas State University, 2017.

Abstract

We study a class of fractional Schrodinger equations of the form $$ \varepsilon^{2\alpha}(-\Delta)^\alpha u+ V(x)u = f(x,u) \quad\text{in } \mathbb{R}^N, $$ where $\varepsilon$ is a positive parameter, $0 < \alpha < 1$, $2\alpha < N$, $(-\Delta)^\alpha$ is the fractional Laplacian, $V:\mathbb{R}^{N}\to \mathbb{R}$ is a potential which may be bounded or unbounded and the nonlinearity $f:\mathbb{R}^{N}\times \mathbb{R}\to \mathbb{R}$ is superlinear and behaves like $|u|^{p-2}u$ at infinity for some $2

Details

Language :
English
ISSN :
10726691
Volume :
2017
Issue :
76,
Database :
Directory of Open Access Journals
Journal :
Electronic Journal of Differential Equations
Publication Type :
Academic Journal
Accession number :
edsdoj.4c7ec0ffba82429f8ef30790d190139e
Document Type :
article