Back to Search
Start Over
Existence of standing waves for Schrodinger equations involving the fractional Laplacian
- Source :
- Electronic Journal of Differential Equations, Vol 2017, Iss 76,, Pp 1-10 (2017)
- Publication Year :
- 2017
- Publisher :
- Texas State University, 2017.
-
Abstract
- We study a class of fractional Schrodinger equations of the form $$ \varepsilon^{2\alpha}(-\Delta)^\alpha u+ V(x)u = f(x,u) \quad\text{in } \mathbb{R}^N, $$ where $\varepsilon$ is a positive parameter, $0 < \alpha < 1$, $2\alpha < N$, $(-\Delta)^\alpha$ is the fractional Laplacian, $V:\mathbb{R}^{N}\to \mathbb{R}$ is a potential which may be bounded or unbounded and the nonlinearity $f:\mathbb{R}^{N}\times \mathbb{R}\to \mathbb{R}$ is superlinear and behaves like $|u|^{p-2}u$ at infinity for some $2
- Subjects :
- Variational methods
critical points
fractional Laplacian
Mathematics
QA1-939
Subjects
Details
- Language :
- English
- ISSN :
- 10726691
- Volume :
- 2017
- Issue :
- 76,
- Database :
- Directory of Open Access Journals
- Journal :
- Electronic Journal of Differential Equations
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.4c7ec0ffba82429f8ef30790d190139e
- Document Type :
- article