Back to Search Start Over

A novel bacterial β-N-acetyl glucosaminidase from Chitinolyticbacter meiyuanensis possessing transglycosylation and reverse hydrolysis activities

Authors :
Alei Zhang
Xiaofang Mo
Ning Zhou
Yingying Wang
Guoguang Wei
Jie Chen
Kequan Chen
Pingkai Ouyang
Source :
Biotechnology for Biofuels, Vol 13, Iss 1, Pp 1-14 (2020)
Publication Year :
2020
Publisher :
BMC, 2020.

Abstract

Abstract Background N-Acetyl glucosamine (GlcNAc) and N-Acetyl chitooligosaccharides (N-Acetyl COSs) exhibit many biological activities, and have been widely used in the pharmaceutical, agriculture, food, and chemical industries. Particularly, higher N-Acetyl COSs with degree of polymerization from 4 to 7 ((GlcNAc)4–(GlcNAc)7) show good antitumor and antimicrobial activity, as well as possessing strong stimulating activity toward natural killer cells. Thus, it is of great significance to discover a β-N-acetyl glucosaminidase (NAGase) that can not only produce GlcNAc, but also synthesize N-Acetyl COSs. Results The gene encoding the novel β-N-acetyl glucosaminidase, designated CmNAGase, was cloned from Chitinolyticbacter meiyuanensis SYBC-H1. The deduced amino acid sequence of CmNAGase contains a glycoside hydrolase family 20 catalytic module that shows low identity (12–35%) with the corresponding domain of most well-characterized NAGases. The CmNAGase gene was highly expressed with an active form in Escherichia coli BL21 (DE3) cells. The specific activity of purified CmNAGase toward p-nitrophenyl-N-acetyl glucosaminide (pNP-GlcNAc) was 4878.6 U/mg of protein. CmNAGase had a molecular mass of 92 kDa, and its optimum activity was at pH 5.4 and 40 °C. The V max, K m, K cat, and K cat/K m of CmNAGase for pNP-GlcNAc were 16,666.67 μmol min−1 mg−1, 0.50 μmol mL−1, 25,555.56 s−1, and 51,111.12 mL μmol−1 s−1, respectively. Analysis of the hydrolysis products of N-Acetyl COSs and colloidal chitin revealed that CmNAGase is a typical exo-acting NAGase. Particularly, CmNAGase can synthesize higher N-Acetyl COSs ((GlcNAc)3–(GlcNAc)7) from (GlcNAc)2–(GlcNAc)6, respectively, showed that it possesses transglycosylation activity. In addition, CmNAGase also has reverse hydrolysis activity toward GlcNAc, synthesizing various linked GlcNAc dimers. Conclusions The observations recorded in this study that CmNAGase is a novel NAGase with exo-acting, transglycosylation, and reverse hydrolysis activities, suggest a possible application in the production of GlcNAc or higher N-Acetyl COSs.

Details

Language :
English
ISSN :
17546834
Volume :
13
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Biotechnology for Biofuels
Publication Type :
Academic Journal
Accession number :
edsdoj.4c81ddbe9c68455dbd79c0aecb71dc64
Document Type :
article
Full Text :
https://doi.org/10.1186/s13068-020-01754-4