Back to Search
Start Over
Supercapacitors and triboelectric nanogenerators based on electrodes of greener iron nanoparticles/carbon nanotubes composites
- Source :
- Scientific Reports, Vol 14, Iss 1, Pp 1-14 (2024)
- Publication Year :
- 2024
- Publisher :
- Nature Portfolio, 2024.
-
Abstract
- Abstract The development of supporting materials based on carbon nanotubes (CNTs) impregnated with iron nanoparticles via a sustainable and green synthesis employing plant extract of Punica granatum L. leaves was carried out for the iron nanoparticle modification and the following impregnation into the carbon nanotubes composites (CNT-Fe) that were also coated with polypyrrole (CNT-Fe + PPy) for use as electrode for supercapacitor and triboelectric nanogenerators. The electrochemical characterization of the materials by cyclic voltammetry (CV) and galvanostatic charge–discharge (GCD) assays revealed that the CNT-Fe + PPy gave rise to better performance due to the association of double-layer capacitance behavior of carbon derivative in association with the pseudocapacitance contribution of PPy resulting in an areal capacitance value 202 mF/ cm2 for the overall composite. In terms of the application of electrodes in triboelectric nanogenerators, the best performance for the composite of CNT-Fe + PPy was 60 V for output voltage and power density of 6 μW/cm2. The integrated system showed that the supercapacitors can be charged directly by the nanogenerator from 0 to 42 mV in 300 s. The successful green synthesis of iron nanoparticles on CNT and further PPy coating provides a feasible method for the design and synthesis of high-performance SCs and TENGs electrode materials. This work provides a systematic approach that moves the research front forward by generating data that underpins further research in self-powered electronic devices.
Details
- Language :
- English
- ISSN :
- 20452322
- Volume :
- 14
- Issue :
- 1
- Database :
- Directory of Open Access Journals
- Journal :
- Scientific Reports
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.4c8f7a992944079a890fc9cb3ddaa40
- Document Type :
- article
- Full Text :
- https://doi.org/10.1038/s41598-024-61173-5