Back to Search
Start Over
Characterizing the upper bound on the transparency order of (n, m)-functions
- Source :
- Journal of Mathematical Cryptology, Vol 18, Iss 1, Pp p. 388-97 (2024)
- Publication Year :
- 2024
- Publisher :
- De Gruyter, 2024.
-
Abstract
- Transparency order (TO{\mathcal{TO}}) is one of the indicators used to measure the resistance of (n,m)\left(n,m)-function to differential power analysis. At present, there are three definitions: TO{\mathcal{TO}}, redefined transparency order (ℛTO{\mathcal{ {\mathcal R} TO}}), and modified transparency order (ℳTO{\mathcal{ {\mathcal M} TO}}). For the first time, we give one necessary and sufficient condition for (n,m)\left(n,m)-function reaching TO=m{\mathcal{TO}}=m and completely characterize (n,m)\left(n,m)-functions reaching TO=m{\mathcal{TO}}=m for any nn and mm. We find that any (n,1)\left(n,1)-function cannot reach TO=m{\mathcal{TO}}=m for odd nn. Based on the matrix product, the necessary conditions for (n,m)\left(n,m)-function reaching ℳTO=m{\mathcal{ {\mathcal M} TO}}=m or ℛTO=m{\mathcal{ {\mathcal R} TO}}=m are given, respectively. Finally, it is proved that any balanced (n,m)\left(n,m)-function cannot reach the upper bound on TO{\mathcal{TO}} (or ℛTO{\mathcal{ {\mathcal R} TO}}, ℳTO{\mathcal{ {\mathcal M} TO}}).
Details
- Language :
- English
- ISSN :
- 18622984
- Volume :
- 18
- Issue :
- 1
- Database :
- Directory of Open Access Journals
- Journal :
- Journal of Mathematical Cryptology
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.4cc8d880b0f48d58ade544639e456ab
- Document Type :
- article
- Full Text :
- https://doi.org/10.1515/jmc-2023-0040