Back to Search Start Over

Pressure-constrained sonication activation of flexible printed metal circuit

Authors :
Lingxiao Cao
Zhonghao Wang
Daiwei Hu
Haoxuan Dong
Chunchun Qu
Yi Zheng
Chao Yang
Rui Zhang
Chunxiao Xing
Zhen Li
Zhe Xin
Du Chen
Zhenghe Song
Zhizhu He
Source :
Nature Communications, Vol 15, Iss 1, Pp 1-12 (2024)
Publication Year :
2024
Publisher :
Nature Portfolio, 2024.

Abstract

Abstract Metal micro/nanoparticle ink-based printed circuits have shown promise for promoting the scalable application of flexible electronics due to enabling superhigh metallic conductivity with cost-effective mass production. However, it is challenging to activate printed metal-particle patterns to approach the intrinsic conductivity without damaging the flexible substrate, especially for high melting-point metals. Here, we report a pressure-constrained sonication activation (PCSA) method of the printed flexible circuits for more than dozens of metal (covering melting points from room temperature to 3422 °C) and even nonmetallic inks, which is integrated with the large-scale roll-to-roll process. The PCSA-induced synergistic heat-softening and vibration-bonding effect of particles can enable multilayer circuit interconnection and join electronic components onto printed circuits without solder within 1 s at room temperature. We demonstrate PCSA-based applications of 3D flexible origami electronics, erasable and foldable double-sided electroluminescent displays, and custom-designed and large-area electronic textiles, thus indicating its potential for universality in flexible electronics.

Subjects

Subjects :
Science

Details

Language :
English
ISSN :
20411723
Volume :
15
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Nature Communications
Publication Type :
Academic Journal
Accession number :
edsdoj.4cf3f8eac9064623aa55fe7310921fc0
Document Type :
article
Full Text :
https://doi.org/10.1038/s41467-024-52873-7