Back to Search Start Over

Homoclinic and heteroclinic solutions to a hepatitis C evolution model

Authors :
Telksnys Tadas
Navickas Zenonas
Marcinkevicius Romas
Cao Maosen
Ragulskis Minvydas
Source :
Open Mathematics, Vol 16, Iss 1, Pp 1537-1555 (2018)
Publication Year :
2018
Publisher :
De Gruyter, 2018.

Abstract

Homoclinic and heteroclinic solutions to a standard hepatitis C virus (HCV) evolution model described by T. C. Reluga, H. Dahari and A. S. Perelson, (SIAM J. Appl. Math., 69 (2009), pp. 999–1023) are considered in this paper. Inverse balancing and generalized differential techniques enable derivation of necessary and sufficient existence conditions for homoclinic/heteroclinic solutions in the considered system. It is shown that homoclinic/heteroclinic solutions do appear when the considered system describes biologically significant evolution. Furthermore, it is demonstrated that the hepatitis C virus evolution model is structurally stable in the topological sense and does maintain homoclinic/heteroclinic solutions as diffusive coupling coefficients tend to zero. Computational experiments are used to illustrate the dynamics of such solutions in the hepatitis C evolution model.

Details

Language :
English
ISSN :
23915455
Volume :
16
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Open Mathematics
Publication Type :
Academic Journal
Accession number :
edsdoj.4d03884e6b74e2b9a53406e71b7e8c9
Document Type :
article
Full Text :
https://doi.org/10.1515/math-2018-0130