Back to Search Start Over

Identifying chemically similar multiphase nanoprecipitates in compositionally complex non-equilibrium oxides via machine learning

Authors :
Keyou S. Mao
Tyler J. Gerczak
Jason M. Harp
Casey S. McKinney
Timothy G. Lach
Omer Karakoc
Andrew T. Nelson
Kurt A. Terrani
Chad M. Parish
Philip D. Edmondson
Source :
Communications Materials, Vol 3, Iss 1, Pp 1-13 (2022)
Publication Year :
2022
Publisher :
Nature Portfolio, 2022.

Abstract

Characterizing fission products in uranium dioxide nuclear fuel is important for predicting its long-term properties. Here, machine learning is used to mine microscopy images of precipitates and nanoscale gas bubbles in high-burn-up fuels, providing detailed structural insight of nanoscale fission products.

Details

Language :
English
ISSN :
26624443
Volume :
3
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Communications Materials
Publication Type :
Academic Journal
Accession number :
edsdoj.4d2fcfbad4f04161b2fb36c690f3ae95
Document Type :
article
Full Text :
https://doi.org/10.1038/s43246-022-00244-4