Back to Search
Start Over
Identifying chemically similar multiphase nanoprecipitates in compositionally complex non-equilibrium oxides via machine learning
- Source :
- Communications Materials, Vol 3, Iss 1, Pp 1-13 (2022)
- Publication Year :
- 2022
- Publisher :
- Nature Portfolio, 2022.
-
Abstract
- Characterizing fission products in uranium dioxide nuclear fuel is important for predicting its long-term properties. Here, machine learning is used to mine microscopy images of precipitates and nanoscale gas bubbles in high-burn-up fuels, providing detailed structural insight of nanoscale fission products.
- Subjects :
- Materials of engineering and construction. Mechanics of materials
TA401-492
Subjects
Details
- Language :
- English
- ISSN :
- 26624443
- Volume :
- 3
- Issue :
- 1
- Database :
- Directory of Open Access Journals
- Journal :
- Communications Materials
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.4d2fcfbad4f04161b2fb36c690f3ae95
- Document Type :
- article
- Full Text :
- https://doi.org/10.1038/s43246-022-00244-4