Back to Search
Start Over
A Bayesian Attractor Model for Perceptual Decision Making.
A Bayesian Attractor Model for Perceptual Decision Making.
- Source :
- PLoS Computational Biology, Vol 11, Iss 8, p e1004442 (2015)
- Publication Year :
- 2015
- Publisher :
- Public Library of Science (PLoS), 2015.
-
Abstract
- Even for simple perceptual decisions, the mechanisms that the brain employs are still under debate. Although current consensus states that the brain accumulates evidence extracted from noisy sensory information, open questions remain about how this simple model relates to other perceptual phenomena such as flexibility in decisions, decision-dependent modulation of sensory gain, or confidence about a decision. We propose a novel approach of how perceptual decisions are made by combining two influential formalisms into a new model. Specifically, we embed an attractor model of decision making into a probabilistic framework that models decision making as Bayesian inference. We show that the new model can explain decision making behaviour by fitting it to experimental data. In addition, the new model combines for the first time three important features: First, the model can update decisions in response to switches in the underlying stimulus. Second, the probabilistic formulation accounts for top-down effects that may explain recent experimental findings of decision-related gain modulation of sensory neurons. Finally, the model computes an explicit measure of confidence which we relate to recent experimental evidence for confidence computations in perceptual decision tasks.
- Subjects :
- Biology (General)
QH301-705.5
Subjects
Details
- Language :
- English
- ISSN :
- 1553734X and 15537358
- Volume :
- 11
- Issue :
- 8
- Database :
- Directory of Open Access Journals
- Journal :
- PLoS Computational Biology
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.4e0b5a5a6f144a189b9f5390449064b0
- Document Type :
- article
- Full Text :
- https://doi.org/10.1371/journal.pcbi.1004442