Back to Search
Start Over
High vacancy formation energy boosts the stability of structurally ordered PtMg in hydrogen fuel cells
- Source :
- Nature Communications, Vol 15, Iss 1, Pp 1-13 (2024)
- Publication Year :
- 2024
- Publisher :
- Nature Portfolio, 2024.
-
Abstract
- Abstract Alloys of platinum with alkaline earth metals promise to be active and highly stable for fuel cell applications, yet their synthesis in nanoparticles remains a challenge due to their high negative reduction potentials. Herein, we report a strategy that overcomes this challenge by preparing platinum-magnesium (PtMg) alloy nanoparticles in the solution phase. The PtMg nanoparticles exhibit a distinctive structure with a structurally ordered intermetallic core and a Pt-rich shell. The PtMg/C as a cathode catalyst in a hydrogen-oxygen fuel cell exhibits a mass activity of 0.50 A mgPt −1 at 0.9 V with a marginal decrease to 0.48 A mgPt −1 after 30,000 cycles, exceeding the US Department of Energy 2025 beginning-of-life and end-of-life mass activity targets, respectively. Theoretical studies show that the activity stems from a combination of ligand and strain effects between the intermetallic core and the Pt-rich shell, while the stability originates from the high vacancy formation energy of Mg in the alloy.
- Subjects :
- Science
Subjects
Details
- Language :
- English
- ISSN :
- 20411723
- Volume :
- 15
- Issue :
- 1
- Database :
- Directory of Open Access Journals
- Journal :
- Nature Communications
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.4e6d7ab53c6e497992cf2a322ed2fc03
- Document Type :
- article
- Full Text :
- https://doi.org/10.1038/s41467-024-51280-2