Back to Search Start Over

Solubility of carbon, manganese and silicon in γ-iron of Fe-Mn-Si-C alloys

Authors :
N. Y. Filonenko
O. I. Babachenko
G. A. Kononenko
K. G. Domina
Source :
Фізика і хімія твердого тіла, Vol 21, Iss 3, Pp 525-529 (2020)
Publication Year :
2020
Publisher :
Vasyl Stefanyk Precarpathian National University, 2020.

Abstract

The study was performed on alloys with a carbon content of 0,37-0,57 % (wt.), silicon 0,23-0,29 % (wt.), manganese 0,7-0,86 % (wt.), the rest– iron. To determine the phase composition of alloys used microstructural, microanalysis and X-ray analysis. In addition, the physical characteristics of the alloys studied in this paper were determined, such as alloy chemical dependence of extension and contraction ratio, impact toughness and hardness. The results obtained in this paper showed that the iron-based alloy with the content of carbon of 0.57 % (wt.), silicon of 0.28 % (wt.) and manganese of 0.86 % (wt.)) had the superior microstructure and physical properties. It was determined that after a number of crystallization and phase transformation the alloy phase structure includes two phases: a-iron and cement magnesium doping Fe2.7Mn0,3C.. For the first time using the method quasichemistry received an expression of the free energy of a γ-iron alloyed with silicon and magnesium, and determined the solubility limit of carbon, manganese and silicon. The maximum content in γ-iron can reach: carbon 6,8 % (at.), manganese – 67,5 % (at.), silicon – 2,3 % (at.).

Details

Language :
English, Ukrainian
ISSN :
17294428 and 23098589
Volume :
21
Issue :
3
Database :
Directory of Open Access Journals
Journal :
Фізика і хімія твердого тіла
Publication Type :
Academic Journal
Accession number :
edsdoj.4e7efcc41a1d469b83764eef5f974db0
Document Type :
article
Full Text :
https://doi.org/10.15330/pcss.21.3.525-529