Back to Search Start Over

Microbiota-indole 3-propionic acid-brain axis mediates abnormal synaptic pruning of hippocampal microglia and susceptibility to ASD in IUGR offspring

Authors :
Tingting Wang
Beidi Chen
Mingcui Luo
Lulu Xie
Mengxi Lu
Xiaoqian Lu
Shuai Zhang
Liyi Wei
Xinli Zhou
Baozhen Yao
Hui Wang
Dan Xu
Source :
Microbiome, Vol 11, Iss 1, Pp 1-23 (2023)
Publication Year :
2023
Publisher :
BMC, 2023.

Abstract

Abstract Background Autism spectrum disorder (ASD) has been associated with intrauterine growth restriction (IUGR), but the underlying mechanisms are unclear. Results We found that the IUGR rat model induced by prenatal caffeine exposure (PCE) showed ASD-like symptoms, accompanied by altered gut microbiota and reduced production of indole 3-propionic acid (IPA), a microbiota-specific metabolite and a ligand of aryl hydrocarbon receptor (AHR). IUGR children also had a reduced serum IPA level consistent with the animal model. We demonstrated that the dysregulated IPA/AHR/NF-κB signaling caused by disturbed gut microbiota mediated the hippocampal microglia hyperactivation and neuronal synapse over-pruning in the PCE-induced IUGR rats. Moreover, postnatal IPA supplementation restored the ASD-like symptoms and the underlying hippocampal lesions in the IUGR rats. Conclusions This study suggests that the microbiota-IPA-brain axis regulates ASD susceptibility in PCE-induced IUGR offspring, and supplementation of microbiota-derived IPA might be a promising interventional strategy for ASD with a fetal origin. Video Abstract

Details

Language :
English
ISSN :
20492618
Volume :
11
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Microbiome
Publication Type :
Academic Journal
Accession number :
edsdoj.4f24a8572ebe4103bc106bbe88f90a07
Document Type :
article
Full Text :
https://doi.org/10.1186/s40168-023-01656-1