Sorry, I don't understand your search. ×
Back to Search Start Over

Terrain Characterization via Machine vs. Deep Learning Using Remote Sensing

Authors :
Jordan Ewing
Thomas Oommen
Jobin Thomas
Anush Kasaragod
Richard Dobson
Colin Brooks
Paramsothy Jayakumar
Michael Cole
Tulga Ersal
Source :
Sensors, Vol 23, Iss 12, p 5505 (2023)
Publication Year :
2023
Publisher :
MDPI AG, 2023.

Abstract

Terrain traversability is critical for developing Go/No-Go maps for ground vehicles, which significantly impact a mission’s success. To predict the mobility of terrain, one must understand the soil characteristics. In-situ measurements performed in the field are the current method of collecting this information, which is time-consuming, costly, and can be lethal for military operations. This paper investigates an alternative approach using thermal, multispectral, and hyperspectral remote sensing from an unmanned aerial vehicle (UAV) platform. Remotely sensed data combined with machine learning (linear, ridge, lasso, partial least squares (PLS), support vector machines (SVM), and k nearest neighbors (KNN)) and deep learning (multi-layer perceptron (MLP) and convolutional neural network (CNN)) are used to perform a comparative study to estimate the soil properties, such as the soil moisture and terrain strength, used to generate prediction maps of these terrain characteristics. This study found that deep learning outperformed machine learning. Specifically, a multi-layer perceptron performed the best for predicting the percent moisture content (R2/RMSE = 0.97/1.55) and the soil strength (in PSI), as measured by a cone penetrometer for the averaged 0–6” (CP06) (R2/RMSE = 0.95/67) and 0–12” depth (CP12) (R2/RMSE = 0.92/94). A Polaris MRZR vehicle was used to test the application of these prediction maps for mobility purposes, and correlations were observed between the CP06 and the rear wheel slip and the CP12 and the vehicle speed. Thus, this study demonstrates the potential of a more rapid, cost-efficient, and safer approach to predict terrain properties for mobility mapping using remote sensing data with machine and deep learning algorithms.

Details

Language :
English
ISSN :
14248220
Volume :
23
Issue :
12
Database :
Directory of Open Access Journals
Journal :
Sensors
Publication Type :
Academic Journal
Accession number :
edsdoj.5015d0e1a67a4cea8ffffb22f9ed628a
Document Type :
article
Full Text :
https://doi.org/10.3390/s23125505