Back to Search
Start Over
A generalization of n-ary prime subhypermodule
- Source :
- Analele Stiintifice ale Universitatii Ovidius Constanta: Seria Matematica, Vol 32, Iss 3, Pp 103-124 (2024)
- Publication Year :
- 2024
- Publisher :
- Sciendo, 2024.
-
Abstract
- Let (M, f, g) be an (m, n)-hypermodule over an (m, n)-hyperring (R, h, k). A proper subhypermodule N of M is called n-ary 2-absorbing subhypermodule if whenever g(r1n−1, m) ⊆ N for some r1n−1 ∈ R and m ∈ M, then either g(r1n−1, M) ⊆ N or g(ri, m, 1R(n−2)) ⊆ N for some i ∈ {1, . . ., n − 1}. Various properties of n-ary 2-absorbing subhy-permodules are investigated. In particular, it is shown that if N is a subhypermodule of an (m, n)-hypermodule (M, f, g) over an (m, n)- hyperring (R, h, k), then N is n-ary 2-absorbing if and only if whenever g(I1, I2, 1R(n−3), L) ⊆ N for some hyperideals I1, I2 of R and subhyper- module L of M, then either g(I1, I2, 1R(n−3), M) ⊆ N or g(I1, 1R(n−2), L) ⊆ N or g(I2, 1R(n−2), L) ⊆ N. Also, n-ary 2-absorbing subhypermodules in multiplication (m, n)-hypermodules are studied.
Details
- Language :
- English
- ISSN :
- 18440835 and 20240031
- Volume :
- 32
- Issue :
- 3
- Database :
- Directory of Open Access Journals
- Journal :
- Analele Stiintifice ale Universitatii Ovidius Constanta: Seria Matematica
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.504eef1b8f0d433aae035654a00a60f0
- Document Type :
- article
- Full Text :
- https://doi.org/10.2478/auom-2024-0031