Back to Search
Start Over
Human neuronal excitation/inhibition balance explains and predicts neurostimulation induced learning benefits
- Source :
- PLoS Biology, Vol 21, Iss 8 (2023)
- Publication Year :
- 2023
- Publisher :
- Public Library of Science (PLoS), 2023.
-
Abstract
- Previous research has highlighted the role of the excitation/inhibition (E/I) ratio for typical and atypical development, mental health, cognition, and learning. Other research has highlighted the benefits of high-frequency transcranial random noise stimulation (tRNS)—an excitatory form of neurostimulation—on learning. We examined the E/I as a potential mechanism and studied whether tRNS effect on learning depends on E/I as measured by the aperiodic exponent as its putative marker. In addition to manipulating E/I using tRNS, we also manipulated the level of learning (learning/overlearning) that has been shown to influence E/I. Participants (n = 102) received either sham stimulation or 20-minute tRNS over the dorsolateral prefrontal cortex (DLPFC) during a mathematical learning task. We showed that tRNS increased E/I, as reflected by the aperiodic exponent, and that lower E/I predicted greater benefit from tRNS specifically for the learning task. In contrast to previous magnetic resonance spectroscopy (MRS)-based E/I studies, we found no effect of the level of learning on E/I. A further analysis using a different data set suggest that both measures of E/I (EEG versus MRS) may reflect, at least partly, different biological mechanisms. Our results highlight the role of E/I as a marker for neurostimulation efficacy and learning. This mechanistic understanding provides better opportunities for augmented learning and personalized interventions. Previous work has suggested that the excitation/inhibition ratio (E/I) contributes to typical and atypical development, mental health, cognition and learning. This study reveals that the E/I ratio in the brain plays an important role in neurostimulation efficacy and is a possible marker for learning.
- Subjects :
- Biology (General)
QH301-705.5
Subjects
Details
- Language :
- English
- ISSN :
- 15449173 and 15457885
- Volume :
- 21
- Issue :
- 8
- Database :
- Directory of Open Access Journals
- Journal :
- PLoS Biology
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.507a17e980de4819929d17a18ed566b0
- Document Type :
- article