Back to Search
Start Over
Deep learning segmentation and quantification method for assessing epicardial adipose tissue in CT calcium score scans
- Source :
- Scientific Reports, Vol 12, Iss 1, Pp 1-10 (2022)
- Publication Year :
- 2022
- Publisher :
- Nature Portfolio, 2022.
-
Abstract
- Abstract Epicardial adipose tissue volume (EAT) has been linked to coronary artery disease and the risk of major adverse cardiac events. As manual quantification of EAT is time-consuming, requires specialized training, and is prone to human error, we developed a deep learning method (DeepFat) for the automatic assessment of EAT on non-contrast low-dose CT calcium score images. Our DeepFat intuitively segmented the tissue enclosed by the pericardial sac on axial slices, using two preprocessing steps. First, we applied a HU-attention-window with a window/level 350/40-HU to draw attention to the sac and reduce numerical errors. Second, we applied a novel look ahead slab-of-slices with bisection (“bisect”) in which we split the heart into halves and sequenced the lower half from bottom-to-middle and the upper half from top-to-middle, thereby presenting an always increasing curvature of the sac to the network. EAT volume was obtained by thresholding voxels within the sac in the fat window (− 190/− 30-HU). Compared to manual segmentation, our algorithm gave excellent results with volume Dice = 88.52% ± 3.3, slice Dice = 87.70% ± 7.5, EAT error = 0.5% ± 8.1, and R = 98.52% (p
Details
- Language :
- English
- ISSN :
- 20452322
- Volume :
- 12
- Issue :
- 1
- Database :
- Directory of Open Access Journals
- Journal :
- Scientific Reports
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.50985dccaa54ddf96c434e799d132d4
- Document Type :
- article
- Full Text :
- https://doi.org/10.1038/s41598-022-06351-z