Back to Search Start Over

Reduction of NANOG Mediates the Inhibitory Effect of Aspirin on Tumor Growth and Stemness in Colorectal Cancer

Authors :
Hefei Wang
Bing Liu
Jing Wang
Jinglin Li
Ying Gong
Sisi Li
Chunli Wang
Bai Cui
Xiaoyuan Xue
Mengying Yang
Wenjun Fan
Zhijie Kang
Muhammad Kamran
Jie Xu
Pengfei Tian
Yuanyuan Luo
Zhijie Hou
Lin Dong
Yanling Ren
Man Li
Qingping Wen
Wei Cheng
Lingzhi Xu
Ling Wang
Quentin Liu
Source :
Cellular Physiology and Biochemistry, Vol 44, Iss 3, Pp 1051-1063 (2017)
Publication Year :
2017
Publisher :
Cell Physiol Biochem Press GmbH & Co KG, 2017.

Abstract

Background/Aims: Cancer stem cells (CSCs) are considered to be responsible for tumor relapse and metastasis, which serve as a potential therapeutic target for cancer. Aspirin has been shown to reduce cancer risk and mortality, particularly in colorectal cancer. However, the CSCs-suppressing effect of aspirin and its relevant mechanisms in colorectal cancer remain unclear. Methods: CCK8 assay was employed to detect the cell viability. Sphere formation assay, colony formation assay, and ALDH1 assay were performed to identify the effects of aspirin on CSC properties. Western blotting was performed to detect the expression of the stemness factors. Xenograft model was employed to identify the anti-cancer effects of aspirin in vivo. Unpaired Student t test, ANOVA test and Kruskal-Wallis test were used for the statistical comparisons. Results: Aspirin attenuated colonosphere formation and decreased the ALDH1 positive cell population of colorectal cancer cells. Aspirin inhibited xenograft tumor growth and reduced tumor cells stemness in nude mice. Consistently, aspirin decreased the protein expression of stemness-related transcription factors, including c-Myc, OCT4 and NANOG. Suppression of NANOG blocked the effect of aspirin on sphere formation. Conversely, ectopic expression of NANOG rescued the aspirin-repressed sphere formation, suggesting that NANOG is a key downstream target. Moreover, we found that aspirin repressed NANOG expression in protein level by decreasing its stability. Conclusion: We have provided new evidence that aspirin attenuates CSC properties through down-regulation of NANOG, suggesting aspirin as a promising therapeutic agent for colorectal cancer treatment.

Details

Language :
English
ISSN :
10158987 and 14219778
Volume :
44
Issue :
3
Database :
Directory of Open Access Journals
Journal :
Cellular Physiology and Biochemistry
Publication Type :
Academic Journal
Accession number :
edsdoj.511ff2f4d40e4031b00786b09fa8acef
Document Type :
article
Full Text :
https://doi.org/10.1159/000485405