Back to Search Start Over

The Maximum Eigenvalue of the Brain Functional Network Adjacency Matrix: Meaning and Application in Mental Fatigue Evaluation

Authors :
Gang Li
Yonghua Jiang
Weidong Jiao
Wanxiu Xu
Shan Huang
Zhao Gao
Jianhua Zhang
Chengwu Wang
Source :
Brain Sciences, Vol 10, Iss 2, p 92 (2020)
Publication Year :
2020
Publisher :
MDPI AG, 2020.

Abstract

The maximum eigenvalue of the adjacency matrix (AM) has been supposed to contain rich information about the corresponding network. An experimental study focused on revealing the meaning and application of the maximum eigenvalue is missing. To this end, AM was constructed using mutual information (MI) to determine the functional connectivity with electroencephalogram (EEG) data recorded with a mental fatigue model, and then was converted into both binary and weighted brain functional network (BFN) and corresponding random networks (RNs). Both maximum eigenvalue and corresponding network characters in BFNs and RNs were considered to explore the changes during the formation of mental fatigue. The results indicated that large maximum eigenvalue means more edges in the corresponding network, along with a high degree and a short characteristic path length both in weighted and binary BFNs. Interestingly, the maximum eigenvalue of AM was always a little larger than that of the corresponding random matrix (RM), and had an obvious linearity with the sum of the AM elements, indicating that the maximum eigenvalue can be able to distinguish the network structures which have the same mean degree. What is more, the maximum eigenvalue, which increased with the deepening of mental fatigue, can become a good indicator for mental fatigue estimation.

Details

Language :
English
ISSN :
20763425
Volume :
10
Issue :
2
Database :
Directory of Open Access Journals
Journal :
Brain Sciences
Publication Type :
Academic Journal
Accession number :
edsdoj.51379c10a16948c7a87587b586ccfcd3
Document Type :
article
Full Text :
https://doi.org/10.3390/brainsci10020092