Back to Search Start Over

Plasmodium vivax Infection Alters Mitochondrial Metabolism in Human Monocytes

Authors :
Suelen Queiroz Diniz
Andréa Teixeira-Carvalho
Maria Marta Figueiredo
Pedro Augusto Carvalho Costa
Bruno Coelho Rocha
Olindo Assis Martins-Filho
Ricardo Gonçalves
Dhélio Batista Pereira
Mauro Shugiro Tada
Fabiano Oliveira
Ricardo Tostes Gazzinelli
Lis Ribeiro do Valle Antonelli
Source :
mBio, Vol 12, Iss 4 (2021)
Publication Year :
2021
Publisher :
American Society for Microbiology, 2021.

Abstract

ABSTRACT Monocytes play an important role in the host defense against Plasmodium vivax as the main source of inflammatory cytokines and mitochondrial reactive oxygen species (mROS). Here, we show that monocyte metabolism is altered during human P. vivax malaria, with mitochondria playing a major function in this switch. The process involves a reprograming in which the cells increase glucose uptake and produce ATP via glycolysis instead of oxidative phosphorylation. P. vivax infection results in dysregulated mitochondrial gene expression and in altered membrane potential leading to mROS increase rather than ATP production. When monocytes were incubated with P. vivax-infected reticulocytes, mitochondria colocalized with phagolysosomes containing parasites representing an important source mROS. Importantly, the mitochondrial enzyme superoxide dismutase 2 (SOD2) is simultaneously induced in monocytes from malaria patients. Taken together, the monocyte metabolic reprograming with an increased mROS production may contribute to protective responses against P. vivax while triggering immunomodulatory mechanisms to circumvent tissue damage. IMPORTANCE Plasmodium vivax is the most widely distributed causative agent of human malaria. To achieve parasite control, the human immune system develops a substantial inflammatory response that is also responsible for the symptoms of the disease. Among the cells involved in this response, monocytes play an important role. Here, we show that monocyte metabolism is altered during malaria, with its mitochondria playing a major function in this switch. This change involves a reprograming process in which the cells increase glucose uptake and produce ATP via glycolysis instead of oxidative phosphorylation. The resulting altered mitochondrial membrane potential leads to an increase in mitochondrial reactive oxygen species rather than ATP. These data suggest that agents that change metabolism should be investigated and used with caution during malaria.

Details

Language :
English
ISSN :
21507511
Volume :
12
Issue :
4
Database :
Directory of Open Access Journals
Journal :
mBio
Publication Type :
Academic Journal
Accession number :
edsdoj.51a8d6d04642acb3c7b1691c5ba420
Document Type :
article
Full Text :
https://doi.org/10.1128/mBio.01247-21