Back to Search Start Over

Enhancing cardiovascular risk prediction through AI-enabled calcium-omics

Authors :
Ammar Hoori
Sadeer Al-Kindi
Tao Hu
Yingnan Song
Hao Wu
Juhwan Lee
Nour Tashtish
Pingfu Fu
Robert Gilkeson
Sanjay Rajagopalan
David L. Wilson
Source :
Scientific Reports, Vol 14, Iss 1, Pp 1-10 (2024)
Publication Year :
2024
Publisher :
Nature Portfolio, 2024.

Abstract

Abstract Whole-heart coronary calcium Agatston score is a well-established predictor of major adverse cardiovascular events (MACE), but it does not account for individual calcification features related to the pathophysiology of the disease (e.g., multiple-vessel disease, spread of the disease along the vessel, stable calcifications, numbers of lesions, and density). We used novel, hand-crafted calcification features (calcium-omics); Cox time-to-event modeling; elastic net; and up and down synthetic sampling methods for imbalanced data, to assess MACE risk. We used 2457 CT calcium score (CTCS) images enriched for MACE events from our large no-cost CLARIFY program (ClinicalTrials.gov Identifier: NCT04075162). Among calcium-omics features, numbers of calcifications, LAD mass, and diffusivity (a measure of spatial distribution) were especially important determinants of increased risk, with dense calcification (> 1000HU, stable calcifications) associated with reduced risk Our calcium-omics model with (training/testing, 80/20) gave C-index (80.5%/71.6%) and 2-year AUC (82.4%/74.8%). Although the C-index is notoriously impervious to model improvements, calcium-omics compared favorably to Agatston and gave a significant difference (P

Subjects

Subjects :
Medicine
Science

Details

Language :
English
ISSN :
20452322
Volume :
14
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Scientific Reports
Publication Type :
Academic Journal
Accession number :
edsdoj.52c409dcb9a544db9e3dcdea6fa8452e
Document Type :
article
Full Text :
https://doi.org/10.1038/s41598-024-60584-8