Back to Search Start Over

Major Determinants of Airway Epithelial Cell Sensitivity to S. aureus Alpha-Toxin: Disposal of Toxin Heptamers by Extracellular Vesicle Formation and Lysosomal Degradation

Authors :
Nils Möller
Sabine Ziesemer
Christian Hentschker
Uwe Völker
Jan-Peter Hildebrandt
Source :
Toxins, Vol 13, Iss 3, p 173 (2021)
Publication Year :
2021
Publisher :
MDPI AG, 2021.

Abstract

Alpha-toxin is a major virulence factor of Staphylococcus aureus. Monomer binding to host cell membranes results in the formation of heptameric transmembrane pores. Among human model airway epithelial cell lines, A549 cells were most sensitive toward the toxin followed by 16HBE14o- and S9 cells. In this study we investigated the processes of internalization of pore-containing plasma membrane areas as well as potential pathways for heptamer degradation (lysosomal, proteasomal) or disposal (formation of exosomes/micro-vesicles). The abundance of toxin heptamers upon applying an alpha-toxin pulse to the cells declined both in extracts of whole cells and of cellular membranes of S9 cells, but not in those of 16HBE14o- or A549 cells. Comparisons of heptamer degradation rates under inhibition of lysosomal or proteasomal degradation revealed that an important route of heptamer degradation, at least in S9 cells, seems to be the lysosomal pathway, while proteasomal degradation appears to be irrelevant. Exosomes prepared from culture supernatants of toxin-exposed S9 cells contained alpha-toxin as well as low amounts of exosome and micro-vesicle markers. These results indicate that lysosomal degradation of internalized toxin heptamers may be the most important determinant of toxin-resistance of some types of airway epithelial cells.

Details

Language :
English
ISSN :
20726651
Volume :
13
Issue :
3
Database :
Directory of Open Access Journals
Journal :
Toxins
Publication Type :
Academic Journal
Accession number :
edsdoj.52e765ddde6c47b99725f4d3d2524a84
Document Type :
article
Full Text :
https://doi.org/10.3390/toxins13030173