Back to Search Start Over

The ability of Interleukin–10 to negate haemozoin-related pro-inflammatory effects has the potential to restore impaired macrophage function associated with malaria infection

Authors :
Dumizulu Tembo
Visopo Harawa
Tam C. Tran
Louise Afran
Malcolm E. Molyneux
Terrie E. Taylor
Karl B. Seydel
Tonney Nyirenda
David G. Russell
Wilson Mandala
Source :
Malaria Journal, Vol 22, Iss 1, Pp 1-16 (2023)
Publication Year :
2023
Publisher :
BMC, 2023.

Abstract

Abstract Background Although pro-inflammatory cytokines are involved in the clearance of Plasmodium falciparum during the early stages of the infection, increased levels of these cytokines have been implicated in the pathogenesis of severe malaria. Amongst various parasite-derived inducers of inflammation, the malarial pigment haemozoin (Hz), which accumulates in monocytes, macrophages and other immune cells during infection, has been shown to significantly contribute to dysregulation of the normal inflammatory cascades. Methods The direct effect of Hz-loading on cytokine production by monocytes and the indirect effect of Hz on cytokine production by myeloid cells was investigated during acute malaria and convalescence using archived plasma samples from studies investigating P. falciparum malaria pathogenesis in Malawian subjects. Further, the possible inhibitory effect of IL-10 on Hz-loaded cells was examined, and the proportion of cytokine-producing T-cells and monocytes during acute malaria and in convalescence was characterized. Results Hz contributed towards an increase in the production of inflammatory cytokines, such as Interferon Gamma (IFN-γ), Tumor Necrosis Factor (TNF) and Interleukin 2 (IL-2) by various cells. In contrast, the cytokine IL-10 was observed to have a dose-dependent suppressive effect on the production of TNF among other cytokines. Cerebral malaria (CM) was characterized by impaired monocyte functions, which normalized in convalescence. CM was also characterized by reduced levels of IFN-γ-producing T cell subsets, and reduced expression of immune recognition receptors HLA-DR and CD 86, which also normalized in convalescence. However, CM and other clinical malaria groups were characterized by significantly higher plasma levels of pro-inflammatory cytokines than healthy controls, implicating anti-inflammatory cytokines in balancing the immune response. Conclusions Acute CM was characterized by elevated plasma levels of pro-inflammatory cytokines and chemokines but lower proportions of cytokine-producing T-cells and monocytes that normalize during convalescence. IL-10 is also shown to have the potential to indirectly prevent excessive inflammation. Cytokine production dysregulated by the accumulation of Hz appears to impair the balance of the immune response to malaria and exacerbates pathology.

Details

Language :
English
ISSN :
14752875
Volume :
22
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Malaria Journal
Publication Type :
Academic Journal
Accession number :
edsdoj.52f1e7ea82e6445991b2942845a3a8ad
Document Type :
article
Full Text :
https://doi.org/10.1186/s12936-023-04539-w