Back to Search Start Over

Divergent histopathological and molecular patterns in chemically induced interstitial cystitis/bladder pain syndrome rat models

Authors :
Ya-Chuan Chang
Chia-Ying Yu
Chen Dong
Sung-Lang Chen
Wen-Wei Sung
Source :
Scientific Reports, Vol 14, Iss 1, Pp 1-11 (2024)
Publication Year :
2024
Publisher :
Nature Portfolio, 2024.

Abstract

Abstract Interstitial cystitis/bladder pain syndrome (IC/BPS) is a complex chronic pain disorder with an elusive etiology and nonspecific symptoms. Although numerous animal models with phenotypes similar to human disease have been established, no available regimen can consistently alleviate clinical symptoms. This dilemma led us to question whether current animal models adequately represent IC/BPS. We compared four commonly used IC/BPS rat models to determine their diverse histopathological and molecular patterns. Female rats were given single treatments with hydrochloric acid (HCL), acetic acid (AA), protamine sulfate plus lipopolysaccharide (PS + LPS), or cyclophosphamide (CYP) to induce IC/BPS. Bladder sections were stained for histopathologic evaluation, and mRNA expression profiles were examined using next-generation sequencing and gene set analyses. Mast cell counts were significantly higher in the HCL and AA groups than in the PS + LPS, CYP, and control groups, but only the AA group showed significant collagen accumulation. The models differed substantially in terms of their gene ontology and Kyoto encyclopedia of genes and genomes pathways. Our observations suggest that none of these rat models fully reflects the complexity of IC/BPS. We recommend that future studies apply and compare multiple models simultaneously to fully replicate the complicated features of IC/BPS.

Details

Language :
English
ISSN :
20452322
Volume :
14
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Scientific Reports
Publication Type :
Academic Journal
Accession number :
edsdoj.53079799f05f423eb10cde50b1b6feea
Document Type :
article
Full Text :
https://doi.org/10.1038/s41598-024-67162-y