Back to Search
Start Over
Optical manipulation of local cerebral blood flow in the deep brain of freely moving mice
- Source :
- Cell Reports, Vol 36, Iss 4, Pp 109427- (2021)
- Publication Year :
- 2021
- Publisher :
- Elsevier, 2021.
-
Abstract
- Summary: An artificial tool for manipulating local cerebral blood flow (CBF) is necessary for understanding how CBF controls brain function. Here, we generate vascular optogenetic tools whereby smooth muscle cells and endothelial cells express optical actuators in the brain. The illumination of channelrhodopsin-2 (ChR2)-expressing mice induces a local reduction in CBF. Photoactivated adenylyl cyclase (PAC) is an optical protein that increases intracellular cyclic adenosine monophosphate (cAMP), and the illumination of PAC-expressing mice induces a local increase in CBF. We target the ventral striatum, determine the temporal kinetics of CBF change, and optimize the illumination intensity to confine the effects to the ventral striatum. We demonstrate the utility of this vascular optogenetic manipulation in freely and adaptively behaving mice and validate the task- and actuator-dependent behavioral readouts. The development of vascular optogenetic animal models will help accelerate research linking vasculature, circuits, and behavior to health and disease.
Details
- Language :
- English
- ISSN :
- 22111247
- Volume :
- 36
- Issue :
- 4
- Database :
- Directory of Open Access Journals
- Journal :
- Cell Reports
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.530c34d3c03248d6abed02a32d2771c5
- Document Type :
- article
- Full Text :
- https://doi.org/10.1016/j.celrep.2021.109427