Back to Search Start Over

Combinative effects of akarkara root-derived metabolites on anti-inflammatory and anti-alzheimer key enzymes: integrating bioassay-guided fractionation, GC-MS analysis, and in silico studies

Authors :
Rana M. Ibrahim
Passent M. Abdel-Baki
Ghada F. Elmasry
Ahmed A. El-Rashedy
Nariman E. Mahdy
Source :
BMC Complementary Medicine and Therapies, Vol 23, Iss 1, Pp 1-18 (2023)
Publication Year :
2023
Publisher :
BMC, 2023.

Abstract

Abstract Background Anacyclus pyrethrum L. (Akarkara root), a valuable Ayurvedic remedy, is reported to exhibit various pharmacological activities. Akarkara root was subjected to bioassay-guided fractionation, to isolate its active constituents and discover their potential bioactivities, followed by computational analysis. Methods The methanol extract and its fractions, methylene chloride, and butanol, were assessed for their antioxidant, anti-inflammatory, and anticholinergic potentials. The antioxidant activity was determined using DPPH, ABTS, FRAP, and ORAC assays. The in vitro anticholinergic effect was evaluated via acetyl- and butyryl-cholinesterase inhibition, while anti-inflammatory effect weas determined using COX-2 and 5-LOX inhibitory assays. The methylene chloride fraction was subjected to GC/MS analysis and chromatographic fractionation to isolate its major compounds. The inhibitory effect on iNOS and various inflammatory mediators in LPS-activated RAW 264.7 macrophages was investigated. In silico computational analyses (molecular docking, ADME, BBB permeability prediction, and molecular dynamics) were performed. Results Forty-one compounds were identified and quantified and the major compounds, namely, oleamide (A1), stigmasterol (A2), 2E,4E-deca-2,4-dienoic acid 2-phenylethyl amide (A3), and pellitorine (A4) were isolated from the methylene chloride fraction, the most active in all assays. All compounds showed significant in vitro antioxidant, anticholinergic and anti-inflammatory effects. They inhibited the secretion of pro-inflammatory cytokines (TNF-α, IL-1β, and IL-6) in activated RAW macrophages. The isolated compounds showed good fitting in the active sites of acetylcholinesterase and COX-2 with high docking scores. The ADME study revealed proper pharmacokinetics and drug likeness properties for the isolated compounds. The isolated compounds demonstrated high ability to cross the BBB and penetrate the CNS with values ranging from 1.596 to -1.651 in comparison with Donepezil (-1.464). Molecular dynamics simulation revealed stable conformations and binding patterns of the isolated compounds with the active sites of COX-2 and acetyl cholinesterase. Conclusions Ultimately, our results specify Akarkara compounds as promising candidates for the treatment of inflammatory and neurodegenerative diseases.

Details

Language :
English
ISSN :
26627671
Volume :
23
Issue :
1
Database :
Directory of Open Access Journals
Journal :
BMC Complementary Medicine and Therapies
Publication Type :
Academic Journal
Accession number :
edsdoj.530d8948eee34621bdeb796ce88690e9
Document Type :
article
Full Text :
https://doi.org/10.1186/s12906-023-04210-6