Back to Search Start Over

Asynchronicity of deglacial permafrost thawing controlled by millennial-scale climate variability

Authors :
Xinwei Yan
Xu Zhang
Bo Liu
Huw T. Mithan
John Hellstrom
Sophie Nuber
Russell Drysdale
Junjie Wu
Fangyuan Lin
Ning Zhao
Yuao Zhang
Wengang Kang
Jianbao Liu
Source :
Nature Communications, Vol 16, Iss 1, Pp 1-12 (2025)
Publication Year :
2025
Publisher :
Nature Portfolio, 2025.

Abstract

Abstract Permafrost is a potentially important source of deglacial carbon release alongside deep-sea carbon outgassing. However, limited proxies have restricted our understanding in circumarctic regions and the last deglaciation. Tibetan Plateau (TP), the Earth’s largest low-latitude and alpine permafrost region, remains underexplored. Using speleothem growth phases, we reconstruct TP permafrost thawing history over the last 500,000 years, standardizing chronology to investigate Northern Hemisphere permafrost thawing patterns. We find that, unlike circumarctic permafrost, TP permafrost generally initiates thawing at the onset of deglaciations, coinciding with Weak Monsoon Intervals and sluggish Atlantic Meridional Overturning Circulation (AMOC) during Terminal Stadials. Modeling elaborates that the associated Asian monsoon weakening induces anomalous TP warming through local cloud–precipitation–soil moisture feedback. This, combined with high-latitude cooling, results in asynchronous boreal permafrost thawing. During the last deglaciation, however, anomalous AMOC variability delayed TP and advanced circumarctic permafrost thawing. Our results indicate that permafrost carbon release, influenced by millennial-scale AMOC variability, may have been a non-trivial contributor to deglacial CO2 rise.

Subjects

Subjects :
Science

Details

Language :
English
ISSN :
20411723
Volume :
16
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Nature Communications
Publication Type :
Academic Journal
Accession number :
edsdoj.537bc0cfe36c4062819d70137dd314fa
Document Type :
article
Full Text :
https://doi.org/10.1038/s41467-024-55184-z