Back to Search Start Over

Ultrathin All‐Solid‐State MoS2‐Based Electrolyte Gated Synaptic Transistor with Tunable Organic–Inorganic Hybrid Film

Authors :
Jungyeop Oh
Seohak Park
Sang Hun Lee
Sungkyu Kim
Hyeonji Lee
Changhyeon Lee
Woonggi Hong
Jun‐Hwe Cha
Mingu Kang
Jun Hyup Jin
Sung Gap Im
Min Ju Kim
Sung‐Yool Choi
Source :
Advanced Science, Vol 11, Iss 23, Pp n/a-n/a (2024)
Publication Year :
2024
Publisher :
Wiley, 2024.

Abstract

Abstract Electrolyte‐gated synaptic transistors (EGSTs) have attracted considerable attention as synaptic devices owing to their adjustable conductance, low power consumption, and multi‐state storage capabilities. To demonstrate high‐density EGST arrays, 2D materials are recommended owing to their excellent electrical properties and ultrathin profile. However, widespread implementation of 2D‐based EGSTs has challenges in achieving large‐area channel growth and finding compatible nanoscale solid electrolytes. This study demonstrates large‐scale process‐compatible, all‐solid‐state EGSTs utilizing molybdenum disulfide (MoS2) channels grown through chemical vapor deposition (CVD) and sub‐30 nm organic‐inorganic hybrid electrolyte polymers synthesized via initiated chemical vapor deposition (iCVD). The iCVD technique enables precise modulation of the hydroxyl group density in the hybrid matrix, allowing the modulation of proton conduction, resulting in adjustable synaptic performance. By leveraging the tunable iCVD‐based hybrid electrolyte, the fabricated EGSTs achieve remarkable attributes: a wide on/off ratio of 109, state retention exceeding 103, and linear conductance updates. Additionally, the device exhibits endurance surpassing 5 × 104 cycles, while maintaining a low energy consumption of 200 fJ/spike. To evaluate the practicality of these EGSTs, a subset of devices is employed in system‐level simulations of MNIST handwritten digit recognition, yielding a recognition rate of 93.2%.

Details

Language :
English
ISSN :
21983844
Volume :
11
Issue :
23
Database :
Directory of Open Access Journals
Journal :
Advanced Science
Publication Type :
Academic Journal
Accession number :
edsdoj.5483b6a014604c99a2f867d724dde80b
Document Type :
article
Full Text :
https://doi.org/10.1002/advs.202308847