Back to Search Start Over

Genome-wide BAC-end sequencing of Cucumis melo using two BAC libraries

Authors :
Puigdomènech Pere
Aranda Miguel A
Garcia-Mas Jordi
Benjak Andrej
Centeno Emilio
Rodríguez-Moreno Luis
González Víctor M
Source :
BMC Genomics, Vol 11, Iss 1, p 618 (2010)
Publication Year :
2010
Publisher :
BMC, 2010.

Abstract

Abstract Background Although melon (Cucumis melo L.) is an economically important fruit crop, no genome-wide sequence information is openly available at the current time. We therefore sequenced BAC-ends representing a total of 33,024 clones, half of them from a previously described melon BAC library generated with restriction endonucleases and the remainder from a new random-shear BAC library. Results We generated a total of 47,140 high-quality BAC-end sequences (BES), 91.7% of which were paired-BES. Both libraries were assembled independently and then cross-assembled to obtain a final set of 33,372 non-redundant, high-quality sequences. These were grouped into 6,411 contigs (4.5 Mb) and 26,961 non-assembled BES (14.4 Mb), representing ~4.2% of the melon genome. The sequences were used to screen genomic databases, identifying 7,198 simple sequence repeats (corresponding to one microsatellite every 2.6 kb) and 2,484 additional repeats of which 95.9% represented transposable elements. The sequences were also used to screen expressed sequence tag (EST) databases, revealing 11,372 BES that were homologous to ESTs. This suggests that ~30% of the melon genome consists of coding DNA. We observed regions of microsynteny between melon paired-BES and six other dicotyledonous plant genomes. Conclusion The analysis of nearly 50,000 BES from two complementary genomic libraries covered ~4.2% of the melon genome, providing insight into properties such as microsatellite and transposable element distribution, and the percentage of coding DNA. The observed synteny between melon paired-BES and six other plant genomes showed that useful comparative genomic data can be derived through large scale BAC-end sequencing by anchoring a small proportion of the melon genome to other sequenced genomes.

Details

Language :
English
ISSN :
14712164
Volume :
11
Issue :
1
Database :
Directory of Open Access Journals
Journal :
BMC Genomics
Publication Type :
Academic Journal
Accession number :
edsdoj.54a67eda8a4f43bf14ca50516d2e72
Document Type :
article
Full Text :
https://doi.org/10.1186/1471-2164-11-618