Back to Search Start Over

Dynamic Property of a New Type of Postearthquake Temporary Prefabricated Lightweight Steel Structure

Authors :
GuoQi Xing
Qing-hai Li
JingJie Yu
Wei Xuan
Source :
Advances in Civil Engineering, Vol 2019 (2019)
Publication Year :
2019
Publisher :
Wiley, 2019.

Abstract

For a new type of postearthquake temporary prefabricated lightweight steel structure proposed in this paper, mainly composed of steel frame, prefabricated hanger slabs, prefabricated hanger columns, reinforced concrete superposed slabs, etc., parameters of dynamic property for the structure, including natural frequency, vibration mode, damping ratio, etc., are determined by the test method. For prefabricated hanger columns and prefabricated hanger slabs, they are all produced with construction waste in factory and assembled on-site, which can form exterior walls. The united method, based on forced vibration method and ambient random vibration method, can quickly obtain accurate natural frequencies of the full-scale two-story experimental model. In this paper, damping oscillatory method is used to obtain damping ratio which can be determined only by the test method. In order to analyse the modal of the experimental model, a finite element model for the full-scale two-story experimental model is established, where the weight of prefabricated hanger slabs is assumed to be supported by prefabricated hanger columns, and the stiffness of prefabricated hanger columns is also increased. In addition, the connections between lightweight steel frame and prefabricated hanger columns are regarded as flexible connection. Comparing natural frequencies obtained from the finite element method with that obtained from the test method, magnification factor of stiffness for prefabricated hanger column is determined. In the analysis of modal for the full-scale two-story experimental model, the results show that the experimental model satisfies the requirement of design for seismic performance.

Details

Language :
English
ISSN :
16878086 and 16878094
Volume :
2019
Database :
Directory of Open Access Journals
Journal :
Advances in Civil Engineering
Publication Type :
Academic Journal
Accession number :
edsdoj.5633c2947fc046a9afa7cfb1c5cba39d
Document Type :
article
Full Text :
https://doi.org/10.1155/2019/7891948