Back to Search Start Over

Estimating sliding drop width via side-view features using recurrent neural networks

Authors :
Sajjad Shumaly
Fahimeh Darvish
Xiaomei Li
Oleksandra Kukharenko
Werner Steffen
Yanhui Guo
Hans-Jürgen Butt
Rüdiger Berger
Source :
Scientific Reports, Vol 14, Iss 1, Pp 1-15 (2024)
Publication Year :
2024
Publisher :
Nature Portfolio, 2024.

Abstract

Abstract High speed side-view videos of sliding drops enable researchers to investigate drop dynamics and surface properties. However, understanding the physics of sliding requires knowledge of the drop width. A front-view perspective of the drop is necessary. In particular, the drop’s width is a crucial parameter owing to its association with the friction force. Incorporating extra cameras or mirrors to monitor changes in the width of drops from a front-view perspective is cumbersome and limits the viewing area. This limitation impedes a comprehensive analysis of sliding drops, especially when they interact with surface defects. Our study explores the use of various regression and multivariate sequence analysis (MSA) models to estimate the drop width at a solid surface solely from side-view videos. This approach eliminates the need to incorporate additional equipment into the experimental setup. In addition, it ensures an unlimited viewing area of sliding drops. The Long Short Term Memory (LSTM) model with a 20 sliding window size has the best performance with the lowest root mean square error (RMSE) of 67 µm. Within the spectrum of drop widths in our dataset, ranging from 1.6 to 4.4 mm, this RMSE indicates that we can predict the width of sliding drops with an error of 2.4%. Furthermore, the applied LSTM model provides a drop width across the whole sliding length of 5 cm, previously unattainable.

Details

Language :
English
ISSN :
20452322
Volume :
14
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Scientific Reports
Publication Type :
Academic Journal
Accession number :
edsdoj.565d052cd7c5485495a281d593dd69da
Document Type :
article
Full Text :
https://doi.org/10.1038/s41598-024-62194-w