Back to Search Start Over

IL-26 mediates epidermal growth factor receptor-tyrosine kinase inhibitor resistance through endoplasmic reticulum stress signaling pathway in triple-negative breast cancer cells

Authors :
Takumi Itoh
Ryo Hatano
Yoshiya Horimoto
Taketo Yamada
Dan Song
Haruna Otsuka
Yuki Shirakawa
Shuji Mastuoka
Noriaki Iwao
Thomas M. Aune
Nam H. Dang
Yutaro Kaneko
Ko Okumura
Chikao Morimoto
Kei Ohnuma
Source :
Cell Death and Disease, Vol 12, Iss 6, Pp 1-17 (2021)
Publication Year :
2021
Publisher :
Nature Publishing Group, 2021.

Abstract

Abstract Triple-negative breast cancer (TNBC) has a poor prognosis compared to other breast cancer subtypes. Although epidermal growth factor receptor (EGFR) is overexpressed in TNBC, clinical trials with EGFR inhibitors including tyrosine kinase inhibitors (EGFR-TKI) in TNBC have heretofore been unsuccessful. To develop effective EGFR-targeted therapy for TNBC, the precise mechanisms of EGFR-TKI resistance in TNBC need to be elucidated. In this study, to understand the molecular mechanisms involved in the differences in EGFR-TKI efficacy on TNBC between human and mouse, we focused on the effect of IL-26, which is absent in mice. In vitro analysis showed that IL-26 activated AKT and JNK signaling of bypass pathway of EGFR-TKI in both murine and human TNBC cells. We next investigated the mechanisms involved in IL-26-mediated EGFR-TKI resistance in TNBC. We identified EphA3 as a novel functional receptor for IL-26 in TNBC. IL-26 induced dephosphorylation and downmodulation of EphA3 in TNBC, which resulted in increased phosphorylation of AKT and JNK against EGFR-TKI-induced endoplasmic reticulum (ER) stress, leading to tumor growth. Meanwhile, the blockade of IL-26 overcame EGFR-TKI resistance in TNBC. Since the gene encoding IL-26 is absent in mice, we utilized human IL-26 transgenic (hIL-26Tg) mice as a tumor-bearing murine model to characterize the role of IL-26 in the differential effect of EGFR-TKI in human and mice and to confirm our in vitro findings. Our findings indicate that IL-26 activates the bypass pathway of EGFR-TKI, while blockade of IL-26 overcomes EGFR-TKI resistance in TNBC via enhancement of ER stress signaling. Our work provides novel insights into the mechanisms of EGFR-TKI resistance in TNBC via interaction of IL-26 with its newly identified receptor EphA3, while also suggesting IL-26 as a possible therapeutic target in TNBC.

Subjects

Subjects :
Cytology
QH573-671

Details

Language :
English
ISSN :
20414889
Volume :
12
Issue :
6
Database :
Directory of Open Access Journals
Journal :
Cell Death and Disease
Publication Type :
Academic Journal
Accession number :
edsdoj.56e668697c254208a1ec8f6af7dc9a5a
Document Type :
article
Full Text :
https://doi.org/10.1038/s41419-021-03787-5